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CHAPTER ONE 

  INTRODUCTION 

1.1 Analogies and differences between Titan and Earth 

The mildly reducing atmosphere6 of Saturn’s largest moon, Titan, has continued 

to attract enormous research studies due to its resemblance to the primordial Earth7-9. 

Titan was first discovered in 1655 by a Dutch astronomer Christiaan Huygens. It has a 

diameter of 5150 km, approximately 70% larger than the Earth’s moon10. Initially, Huygens 

had believed that Titan was the largest of the planetary satellites, but this distinction was later 

found to belong to Jupiter’s largest moon Ganymede11, 12, making Titan to be the second 

largest satellite in the solar system. Like Earth, Titan’s dense atmosphere is mainly 

composed of molecular nitrogen (N2) (~95%). The other main constituents are methane 

(CH4) (~4%), hydrogen (H2), other traces of hydrocarbon and nitriles (<2%)13. With a 

surface temperature and pressure of approximately 94 K and 1.5 bar, respectively, Titan’s 

atmosphere is nearly five times densier than the Earth’s.  

Despite the aforementioned differences between these two planetary bodies, 

several analogies can be drawn between them. For example, although Titan is much 

colder than the Earth, their vertical structure resembles each other, hence their layers are 

classified based on temperature characteristics14. Nevertheless, Titan’s higher density 

makes its atmosphere to be much more extended from the surface than the Earth’s. While 

the troposphere of Titan extends to around 40 km from the surface, the Earth’s 

tropopause lies only 15 km above the surface. The warmest region of Titan’s atmosphere 

i.e. the mesosphere, is extended to latitudes higher than 400 km (compared to 100 km for 

the Earth) but the shape looks very much the same14. Figure 1.1 shows the density and 

temperature profiles of Titan and Earth’s atmospheres. 
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On Titan, CH4 and H2 are equivalent, respectively, to the terrestrial condensate 

water vapor (H2O) and the non-condensate carbon dioxide (CO2). Although CH4 cycle on 

Titan is still poorly understood, its role can be compared to the role of water on Earth15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Based on the primordial noble gas composition measurements by the Cassini’s 

Ion and neutral mass spectrometer (INMS)16 and the Huygens Gas Chromatograph Mass 

spectrometer (GCMS)17, it is speculated that Titan’s atmosphere is secondary, just like 

the Earth’s1. The major characteristic that makes Titan unique among the other solar 

Figure 1.1: Physical structures of the atmospheres of Titan and Earth showing 
temperature and density profiles. The vertical axis is logarithmic pressure3
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system’s satellites (and the Earth) is its massive inventory of organic chemicals that 

constitutes its dense atmosphere.  

1.2 Titan’s Photochemistry 

A combination of solar ultraviolet (UV) radiation and energetic particles from 

Saturn’s magnetosphere (such as the suprathermal electrons) induces an active 

photochemistry that results in a chain of complex chemical reactions that lead to the 

formation of larger polyaromatic hydrocarbons (PAH), polyacetylene and other larger 

nitrile bearing species that constitutes the organic haze layers and aerosols whose 

formation mechanisms remain poorly understood to-date18, 19. Traditional laboratory 

approaches aimed at investigating the complex processes in Titan’s atmosphere have 

involved electrical discharges20-22 or UV radiation on simulated atmospheres23-25 

followed by analysis of the complex chemical products. In some cases, direct 

investigation of the underlying reactions has been pursued, albeit not under collisionless 

conditions in which the primary reaction products may be determined unambiguously. 

 In Titan’s upper atmosphere, the photochemistry of neutrals and ions is strongly 

coupled18
, hence it is a worthwhile research effort to study the photochemistry of both the 

neutral composition that is mostly inherent in lower stratosphere as well as the rich 

ionosphere chemistry in Titan’s ionosphere as revealed by the Cassini’s Ion and Neutral 

Mass spectrometer (INMS). Furthermore, ion-molecule reactions in Titan’s upper 

atmosphere26 have recently been found to be much more important in Haze formation and 

hydrocarbon growth than it was initially thought. As such an accurate determination of 

primary branching ratios of nitrogen ion (N2
+) reactions with the main minor neutral 
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components of Titan’s atmosphere is also significantly important for accurate modeling 

of Titan’s atmosphere. 

In this thesis, we present a series of closely related fundamental photochemical 

studies as part of our comprehensive program aimed at investigating elementary reactions 

that can provide insights into the mechanisms that are responsible for the formation and 

growth of unsaturated hydrocarbon molecules and nitriles from the ‘bottom up’ in Titan’s 

low temperature environment. Interpreted with the aid of high level ab initio calculations 

to characterize the relevant potential energy surfaces, the photochemistry measurements 

are all undertaken on cold, isolated molecules in molecular beams with the primary 

reaction products determined along with their translational energy distributions (and 

angular distributions in some cases). Towards the end of the thesis in Chapter 5, we 

present measurements of primary branching ratios of ion-molecule reactions of state-

prepared N2
+ cations with the main minor neutral components of Titan’s neutral 

atmosphere. By examining the neutral photochemistry relevant to Titan’s stratosphere, 

the ion chemistry that provides insights into the rich Titan’s ionospheric chemistry and 

the ion-molecule reactions relevant to the upper ionosphere, this thesis provides detailed, 

integrated dynamical insights into the complex organic chemistry that is inherent in the 

strangely familiar world of Titan. 

1.3 Origin of Titan’s Nitrogen dominated atmosphere 

 Although nitrogen is ubiquitous on the atmospheres of terrestrial planets of Earth, 

Mars and Venus1, its detection on a comparatively small and very cold moon of Titan by 

Voyager mission in 1980 was quite surprising. Generally, nitrogen in the atmosphere of 

planets and satellites can either have a primordial or a secondary origin depending on the 
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way it was initially delivered1, 27. The secondary origin means that N2 could be a 

dissociation product of another nitrogen-bearing primordial molecule such as ammonia 

(NH3). In sections 1.3.1 and 1.3.2, we give a brief review of the various possibilities of 

the origin of N2 on Titan. 

1.3.1 Direct Capture of N2: Primordial N2 

Compared to Earth’s oxidizing atmosphere, Titan’s reducing atmosphere has 

methane (CH4) as a greenhouse gas instead of carbon dioxide and free hydrogen gas 

instead of oxygen (O2). Although not in similar proportions, these mixture of gases is a 

resemblance of the putative composition of the outer solar nebular which could be an 

indication that the N2 on Titan’s atmosphere is primordial, i.e. it was delivered as N2 by 

the planetesimals that formed the satellite1, 8. Even though cold trapping of N2 in the 

Titan forming planetesimals28 was suggested earlier, the Huygens GCMS measurement 

of primordial argon (36Ar) did not support this suggestion. A direct capture of N2 would 

also be associated with 36Ar given the fact that the two have similar trapping 

temperatures. The associated solar ratio for the 36Ar/N2 in such a scenario would be 0.11. 

This is in contradiction with the GCMS5 measured ratio of 2.1 Χ 10-7. This clearly 

eliminates a direct capture of N2 as the origin of Titan’s N2. Another implication of this 

measurement is that the planetesimals that formed Saturn’s satellites, including Titan and 

Enceladus were certainly too warm for direct trapping of N2. Thus, the N2 on Titan must 

be secondary, produced by degassing of the icy planetesimals that formed the satellite11. 

1.3.2 Secondary formation of N2 from primordial NH3 

 For the terrestrial planets of Mars, Venus and Jupiter, N2 is believed to be of 

secondary origin29. This is also believed to be the case for Titan. What this means is that 
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N2 must have arrived on these solar system objects as an easily trapped condensed 

compound such as NH3. The concept is also true for the other meteorites, comets and 

inner planets. For Earth and the meteolites, this conclusion is supported by the studies of 

15N/14N ratio30. On the contrary, N2, the dominant form of nitrogen in the outer solar 

nebula, was most probably included in the hydrodynamic collapse of surrounding nebula 

gases that deposited H2 and He to Saturn31. According to the comets, icy planetesimals 

formed at temperatures beyond 32 K will not contain N2, an additional suggestion in 

support of the secondary source for the origin of Titan’s atmosphere3. 

 With a density of 1.8 g/cm-3, it is believed that Titan is composed of roughly 40 % 

ice by mass and the rest 60% being rock32. Ammonia is therefore believed to have been 

trapped initially in ice of Titan forming planetesimals. During the accretionary heating 

phase, volatiles were released to the atmosphere. Large quantities of water vapor, 

methane and ammonia are believed to have been present in Titan’s primordial 

atmosphere3. Figure 1.2 (a) shows a photochemical scheme for the production of N2 from 

NH3 on Titan’s primordial atmosphere while Figure 1.2 (b) presents a cartoon 

summarizing the processes that are thought to be involved in forming N2 on Titan. 

 According to Figure 1.2 (a) the photolysis of NH3 produces amidogen radical 

(NH2)
1. About one third of the dissociated NH3 is recycled back by the reaction of the 

NH2 radical with hydrogen atom (H). The remaining NH2 radicals then react in a self 

recombination reaction to produce hydrazine (N2H4). Above 150 K, large amounts of 

N2H4 remains in the vapor phase. This leads to its dissociation forming an intermediate 

radical, hydrazyl (N2H3). The self-recombination of N2H3 radicals leads to the formation 

of N2.  However, below 150 K, little NH3 is in the vapor phase and even small amounts 
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of N2H4 from it condenses, preventing the subsequent production of N2. Apart from NH3, 

large amounts of water vapor are also present at temperatures greater that 250 K. The 

photolysis of H2O vapor therefore results in the production of highly reactive hydroxyl 

radicals (OH) and H atoms. The H atoms then react with NH2 to form NH3. Based on the 

cycle of reactions depicted in Figure 1.2 (a), the ideal temperature that is necessary to 

produce N2 from NH3 on primordial Titan is 150-250 K. 

 Although there is a general consensus that N2 in Titan was produced from the 

dissociation of NH3 as described above, the original source of NH3 is less clear. Titan’s 

forming planetesimals could have originated from Saturn’s subnebula or as comets in the 

outer solar nebular33. However, if comets were the source of NH3 on Titan, the 15N/14N 

ratio on Titan should be the same order of magnitude as in the comets, assuming that no 

escape of N2 occurred over geological time.  

   

 

 

Figure 1.2 (a): Photochemical production of N2 from NH3 in Titan’s primordial atmosphere.1 
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1.3.3 N2 from impacts 

 In addition to NH3 photolysis, the conversion and replenishment of N2 from 

Titan’s primordial NH3 by impacts associated with Titan’s accretion or the late heavy 

bombardment (LHB)3, 34 has also been suggested as a possible origin of Titan’s N2.  The 

possibility of shock-induced dissociation of ammonia from high velocity impacts during 

Titan’s accretion was initially tested in a laboratory simulation experiment by McKay et 

al; in 198835. In this experiment, a 1064 nm Nd-YAG laser was impacted on a mixture 

containing NH3 and CH4, generating large quantities of N2. Although a creative idea, this 

Figure 1.2 (b): A cartoon showing a summary of the postulated origin of N2 on Titan’s 
reducing atmosphere1
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experiment resulted in the formation of other higher weight compounds that had m/z 

values greater than that of N2. Furthermore, the shock tube experiment did not include 

water vapor that would inhibit the production of N2, especially in the cooling phase of the 

shock. Seven years later, Griffith and Zahnle36 suggested that Titan’s N2 atmosphere 

could have been a result of cometary impacts. This scenario relies on the fact that the 

source of N2 comes from the comets that condense out of the solar nebula, not in the 

planetesimals that condensed from the Saturnian’s subnebula to accrete Titan. The 

cometary hypothesis is based on the belief that N2 was supplied originally in the form of 

complex organic molecules or molecular nitrogen. However, if, indeed, comets were the 

source of Titan’s atmosphere, the D/H ratio on Titan should resemble that of comets; 

which is not the case. Thus, the comets as well as direct infusion of N2 by comets are 

unlikely to be the source of N2 on Titan. The cometary hypothesis is in further weakened 

by the fact that the comets are deficient in N2 since the temperature in the region of their 

condensation between the orbits of Neptune and Uranus was too high (50-60 K) for 

trapping of nitrogen37 . In a recent study, a new mechanism for the post-accretion 

formation of Titan’s N2 has been suggested and a laboratory investigation implemented38. 

The study reports on a hypothesis that proposes the conversion and replenishment of N2 

from NH3 contained on Titan by impacts during the LHB. The results of these laboratory 

based impact experiments aimed at the determination of the efficiency of N2 production 

from ammonium hydrate (NH3-H2O) ice have concluded that Titan, regardless of its 

thermal history, would acquire sufficient N2 to account for the current atmosphere during 

the LHB and that most of the pre-LHB atmosphere would have been replaced by impact-

induced N2. So far, the results of this study are controversial since the Cassini-Huygens 
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data5 does not show evidence of any such effects of cometary impact either in the 

atmosphere or on the surface of Titan. The presence of certain species on Titan such as 

primordial argon (36Ar) are absent in comets. This provides an additional puzzle as to 

whether comets were responsible for N2 during LHB. 

1.4 Methane in Titan’s atmosphere 

 As one of the most significant potential biomarkers in the solar system, CH4 plays 

a central, controlling role in maintaining Titan’s thick nitrogen atmosphere1, 3, 15. It is the 

source of haze layers that are responsible for the absorption of solar infrared radiation and 

the warming of the stratosphere by approximately 100-degree Celsius. Additionally, CH4 

is the source of hydrogen whose molecular collisions results in a 20 degree warming in 

Titan’s troposphere39. Therefore, should Titan run out of CH4, the atmosphere would 

collapse due to a drop in the temperature and the condensation of N2 gas into liquid 

droplets. In summary, the three potential sources of methane on Titan includes: (i) direct 

delivery by Titan forming planetesimals; (ii) formation from primordial (non-methane) 

carbon and (iii) biological1. A biotic production of CH4 that involves serpentinization 

reactions in Titan’s interior has particularly been proposed as a major origin of Titan’s 

atmospheric methane. There is another alternative scenario that suggests that methane 

was incorporated in Titan’s planetesimals before its formation. The serpentinization 

reactions are not able to reproduce the Methane’s Deuterium over hydrogen (D/H) ratio 

observed at present Titan’s atmosphere. This process would require a maximum D/H 

ratio in Titan’s water ice 30 % lower than the value likely acquired by the satellite during 

its formation, based on Cassini observations at Enceladus40. 
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1.5. Titan atmosphere as a factory of Hydrocarbons 

 Having a massive atmosphere that consist of  ~95% N2 and ~4% methane32, the 

solar radiation and charged particle collisions initiates chemical processes that break up 

these gas molecule. Despite being far from the sun and receiving only 1 % of the solar 

ultraviolet flux as compared to the Earth, photochemistry is the main driving force that 

makes it possible for Titan’s atmosphere to have a thriving complex organic chemistry 

that leads to the formation of complex hydrocarbon molecules. At times, when Titan is in 

the vicinity of Saturn’s magnetosphere, it is bombarded by charged particles such as the 

magnetospheric electrons which also contribute to the photoionization and dissociation of 

N2 and CH4. Simple hydrocarbons such as ethane, acetylene, diacetylene, hydrogen 

cyanide and cyanogen then readily form41, 42. Through a series of complex photochemical 

processes, more complex molecules such as propane, butane, polyacetylenes and 

cynanoacetylenes are then formed systematically43, 44.  

 

1.6 Haze formation 

 Starting with its initial discovery by Huygens in 1655, the detection of CH4 in its 

atmosphere by Kuiper in 1944, the Voyager fly-bys in 1980 to the recent 

Cassini/Huygens space mission, Titan has been the subject of many studies aimed at 

understanding its climate, atmospheric dynamics and the important role of the haze that is 

formed in its atmosphere. The haze, having a well-defined structure, obscures Titan’s 

surface from direct observations in the visible and is directly responsible for the orange 

color of Titan’s atmosphere18. The haze particles are, in addition, believed to play an anti-

greenhouse effect similar to that of the terrestrial atmospheric aerosols and clouds29. 
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Nevertheless, the processes and mechanisms that control haze formation and its radiative 

properties have been the least and poorly understood to date. Figure 1.3 shows a picture 

of Titan’s stratospheric haze as seen by the Cassini spacecraft. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1.3: Image taken with the Cassini spacecraft's narrow-angle camera showing the 
complex structure of Titan’s atmospheric haze layers. The Image was taken on 3 July 2004, 
at a distance of about 789 000 kilometers from Titan. (Image courtesy of NASA/JPL/Space 
Science Institute) 
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 The entire chemistry that leads to the formation of the haze starts with the 

dissociation of N2 and CH4 through electron and photon impacts. In the upper 

atmosphere, primary processes leads to the formation of acetylene (C2H2) and hydrogen 

cyanide (HCN). Once these molecules are formed, they diffuse down to the lower levels 

where they allow the formation of higher hydrocarbons and nitriles13. CH4 dissociation 

also occurs in the lower stratosphere through the photocatalytic processes involving C2H2 

and other polynes. 

1.7 Titan’s stratosphere, neutral atmosphere and surface features 

 The composition of Titan’s atmosphere from an altitude of ~140 km down to the 

surface was determined by the Cassini-Huygens probe GCMS after its successful 

landing5. Although the Voyager remote sensing instruments had already identified and 

measured several minor constituents in the tropopause and the stratosphere, the height 

profiles, isotope ratios and noble gas concentrations were not successfully retrieved from 

these data. It was therefore not possible to determine the fate of the photochemically 

produced gases in the upper atmosphere until the arrival of the Cassini orbiter. Figure 1.3 

shows examples of averaged mass spectra obtained on; (a) the surface, (b) 130 to 120 km 

altitude and (c) 20 to 10 km altitude. The Huygens probe was also assigned to determine 

the extent to which simpler trace gases can form complex molecule, condensates or 

aerosols particles that ultimately precipitate on the surface. As can be seen from Figure 

1.3, N2, CH4, H2, 
22Ne, 36Ar and 40Ar were detected in situ in the lower surface. Kr and 

Xe could not be detected as they were below the detection limit of the instrument. 

Additionally, C2H6, C2H2, C2N2 and CO2 were detected as they evaporated from the 

surface directly below the probe28. 
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Figure 1.4.  Examples of averaged mass spectra obtained at high, low altitude and on the 
surface; (a) Average from 130 to 120 km, (b) Average from 20 to 10 km, (c) Average 
surface spectra5  
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In addition to the GCMS results, the chemistry of Titan’s neutral atmosphere has 

been a subject of a number modeling studies by several groups42, 45, 46. Figure 1.5 

illustrates the basic chemical processes that constitute the active chemistry prevalent in 

the stratosphere1. On the left hand side, pathways for isolated CH4 chemistry are shown. 

Primarily, CH4 is dissociated by the Lyman-alpha radiation at 121.6 nm resulting in the 

formation of reactive methyl (CH3), 
1CH2, 

3CH2 and CH radicals47. CH3 is particularly 

produced at nearly 50% branching and it is indeed the precursor to all complex organics 

on Titan’s atmosphere. As mentioned earlier, even though photolysis in the major 

contributor for CH4 destruction in the upper atmosphere, below the stratosphere, catalytic 

destruction of C2H2 plays a crucial role in the irreversible destruction of CH4.  

As shown in Figure 1.5, further chemistry results in the formation of much 

heavier and stable hydrocarbons that includes C2H2, C2H4, C3H8, C4H10, polyacetylenes 

or polyynes (C2n+2H2, n= 1,2,3,…..etc). Although polyacetylenes higher than C4H2 have 

not been detected in Titan’s atmosphere, perhaps due to their low vapor phase 

concentrations, Kaiser and co-workers have shown that triacetylene (C6H2)
48 can readily 

be formed in Titan’s upper atmosphere from a reaction between C2H and C4H2. This 

pathway has been suggested as a possible route to the synthesis larger hydrocarbons and 

polyacetylenes in Titan’s low temperature and pressure conditions. The work presented in 

chapter three of this thesis show that the photodissociation of weakly bound van-der-waal 

complexes such as the diacetylene dimer49 initiates atomic hydrogen loss and hydrogen 

transfer reactions forming two prototypes of resonantly stabilized free radicals (RSFRs), 

C4H3 and C8H3, respectively, via one step photoexitation pathway.  These RSFRs 

represent hydrogenated polyynes which can neither be synthesized via traditional 
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photodissociation pathways of the diacetylene monomer nor via hydrogen addition to the 

polyynes. The photodissociation dynamics of mixed dimers involving acetylene, 

diacetylene and other trace constituents represent an overlooked reaction class that has 

the potential to synthesize more complex, RSFRs, considered to be major building blocks 

to polycyclic aromatic hydrocarbons in Titan’s low-temperature stratosphere. The 

implication of these findings to Titan’s neutral atmosphere will be discussed in detail in 

Chapter 3 of this thesis. 

 

 
 
 

 

 

 

Figure 1.5: Basic schematic of coupled methane–ammonia chemistry in the neutral atmosphere of Titan 
below  ~800 km, showing the production of stable hydrocarbons and nitriles, and subsequently the 
photochemical haze1 
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1.8 Titan’s Ionosphere and Ion-molecule reactions 

1.8.1 Composition of Titan’s ionosphere 

 Prior to the Cassini tour of Titan’s ionosphere, atmospheric models had suggested 

that the primary altitude of aromatic hydrocarbon formation (example benzene formation) 

occurs in the well-mixed portion of the atmosphere at around 750 km. This being the 

case, the models proposed that the process of aromatic hydrocarbon formation would be 

accompanied by hydrocarbon radical reactions with a much weaker source due to ion-

neutral reactions near the ionospheric peak of 100 km43. The expectations prior to the 

Cassini orbiter were that benzene would be barely measurable at the lowest altitudes 

observable by Cassini’s INMS (~950 km). Surprisingly, the INMS observed an 

unexpected abundance of hydrocarbon and nitrile species throughout the instruments 

mass range (1-100 Daltons)16. Even more surprising and unexpected was the 

measurement of up to 350 Daltons of positive ions by the Cassini plasma spectrometer 

(CAPS) ion beam spectrometer16, 46. Although not calibrated to measure negative ions, 

the CAPS electron spectrometer also, albeit at low resolution, reported an appreciable 

concentration of negative ions exceeding to over 10,000 Daltons50. 

 Figure 1.6 shows the INMS measurements of the ion composition obtained during 

the Cassini’s T40 flyby. The spectrum represents the average composition in the 1015–

1050 km region of the atmosphere that was obtained near the time of closest approach. 

As it is also the case with other reducing environments, ionization in Titan’s ionosphere 

flows from species whose parent neutrals have smaller proton affinities (PA) to species 

whose parent neutrals have larger PA. As such, proton exchange reactions drive the 

chemistry in the ionosphere of Titan resulting in the most abundant ions being essentially 
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protonated neutrals (closed shell ions) with the HCNH+ ion being the most abundant4, 46. 

Radical cations such as C2H4
+, C3H4

+, NH3
+ and HCN+ are difficult to produce and even 

when they are formed, they are eliminated fast through reactions with the main neutral 

species as well as through electron-dissociative recombination. In summary, the INMS 

results presented in Figure 1.6 was a confirmation of a long-thought idea that a very rich 

chemistry is taking place in Titan’s ionosphere. 

 

 

 

 

Figure 1.6: Positive ions mass spectrum measured during the T40 encounter, averaged 
between the altitudes of 1015 and 1050 km. The black dots show the INMS 
measurements, and the black line connects the points. Error bars represent the uncertainty 
due to counting statistics. They are smaller than the symbol size for larger densities. They 
do not include a systematic error of 20% due to calibration uncertainties. The dotted line 
represents the modeled spectrum with densities of selected neutrals tuned to reproduce 
the observations4  
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1.8.2 Ion-molecule reactions in Titan ionosphere and their role in Haze formation 

 Supported by the current modeling studies on Titan’s ionosphere2, 45, 51, the 

Cassini data have shown that ion chemistry and the accompanying relevant ion-molecule 

reactions are important in determining the abundances of trace neutral species and laying 

a strong foundation in understanding the mechanisms that lead to the formation of the 

haze layers and aerosols. Ionization in the upper atmosphere generates N2
+ and N+ in 

approximately equal abundances52, 53. Following the formation of N2
+ and N+, a network 

of ion-molecule reactions is initiated by the reactions of these ions with the next abundant 

molecule, CH4.  In Titan’s mesosphere and thermosphere, N2 and CH4 are dissociated by 

a combination of extreme solar ultraviolet (EUV) radiation and energetic electrons from 

Saturn’s magnetosphere according to reactions 1.8.2.1 to 1.8.2.742. Figure 1.7 portrays a 

snap shot of the first key neutrals and the ion-molecule reactions that occurs in the 

ionosphere while reactions 1.7.2.1 to 1.7.2.3 represent the very first primary ion-molecule 

reactions that occurs in Titan’s ionosphere.  

  N2
+ + CH4  → CH2

+ + N2 + H2     ..………………1.8.2.1 

       → CH3
+ + N2 + H   …………………1.8.2.3 

(Rate constant k = 1.14 x 10-9 cm3 s-1 ) 

                        N+ + CH4  → CH3
+ + NH ………… ………………………..1.8.2.3 

                                  → CH4
+ + N………………….………………….1.8.2.4 

                              → HCNH+ + H2 ……….…………………….. 1.8.2.5 

                                     → HCN+ + H2 + H……………………….1.8.2.6 

(Rate constant k = 1.15 x 10-9 cm3 s-1) 
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  CH2
+ and CH3

+ product ions are unreactive with N2 and will go on to react 

further with CH4 and other neutral hydrocarbon species present in the atmosphere. New 

ions are then formed within the framework of secondary ion-molecule reactions and the 

ionospheric chemistry becomes complex very quickly as can be seen in Figure 1.7. The 

newly formed molecules diffuse to lower altitudes where they mix evenly with the 

atmosphere and contribute to the molecular abundances observed by the Voyager and the 

Cassini spacecrafts. As the molecules diffuse through the stratosphere, they are 

condensed. The aerosol layers formed by the condensation of these molecules in the 

stratosphere are believed to be one of the main sources of the Titan’s characteristic 

orange haze. 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 1.7: A snap shot of the first key neutrals and the ion-molecule 
reactions that occurs in the ionosphere2 
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 In order to build an accurate model of Titan’s ionospheric chemistry, it is of crucial 

importance to know the primary species present, the main primary reactions occurring, 

the main primary product channels, the rate of formation and destruction of each of the 

species present, the associated primary product branching ratios of these reactions and the 

other physical parameters (such as pressure and temperature) that govern the chemistry. 

Laboratory data acquired at well defined conditions is therefore very essential to the 

construction of an accurate model. In instances where the required laboratory data such as 

the reaction rates and BRs are unavailable, it is common to make estimates which usually 

make the models deficient as far as the full description of the planetary atmosphere is 

concerned. In a detailed uncertainty analysis of kinetic parameters of the ion-molecule 

reactions included in Titan’s ionospheric models, Carrasco et al54, 55; have shown the 

uncertainty on the measured BRs as one of the limiting factors for accurate prediction of  

ion-density profiles in Titan’s ionosphere.  

 The BRs of the main primary product channels associated with the ion-molecule 

reaction between N2
+ and CH4 have particularly been cited as a major contributor to the 

uncertainty in the models. Although Titan’s ionosphere is a difficult environment to 

model because the chemistry is not uniform throughout, to-date, some models2 have 

proved to be remarkably accurate in matching the observations provided by the Voyager 

and the Cassini missions. Needless to say, the insights that the models provide into 

Titan’s ionosphere is useful, but their true accuracy cannot be valid without accurate 

laboratory determinations of important primary astrophysical quantities such as the BRs 

at low temperature and pressure conditions that closely resemble Titan’s. As such, we 

show in chapter two how a modified ion imaging apparatus can be modified to measure 
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accurate BRs of ion-molecule reactions at well defined conditions of pressure and 

temperature that are close to Titan’s. Finally, in Chapter five, we present BR 

measurements of state-prepared N2
+ initiated ion-molecule reactions using the newly 

commissioned apparatus. In what we are calling ‘’Astrochemical dynamics’’, the 

development of such new methodologies that probe Titan’s ion-molecule reactions at 

relatively low temperature regimes allows for direct and deeper dynamical information of 

such a complicated ionosphere to be inferred.  
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CHAPTER TWO 

EXPERIMENTAL 

2.1 Direct current (DC) slice ion imaging 

For Ethylamine (ETA) cation dissociation, experiments are carried out using a 

velocity map imaging technique that is optimized for DC slice imaging. The technique 

has been described in detail elsewhere56, 57, hence we only give a brief description here. 

The schematic diagram for the experimental set-up is shown in Figure 2.1. The resonance 

enhanced multiphoton ionization scheme (REMPI) that is used in the preparation of ETA 

cation is illustrated in Figure 2.2. In the 1+1 REMPI scheme, two photons of 233 nm 

laser light are used to prepare ground state ETA cation. Absorption of an additional 

photon from the same light leads to fragmentation of the state prepared ETA cation. Both 

ionization and dissociation occurs from the same laser pulse. The product ions are then 

accelerated through multilens velocity mapping assembly and impacted onto a dual 

microchannel plate array of 120 mm diameter that is then coupled to a p-47 phosphor 

screen. A narrow gate of about 80 ns was used to appropriately sample the central section 

of the distribution to implement the slicing condition. The resulting ion image was 

recorded by a CCD camera (Sony XC-ST50), 768 X 494 pixels) in conjunction with the 

IMACQ Megapixel acquisition program58.  

2.2. Modified Ion imaging apparatus  

An overview of the imaging apparatus that has been modified to measure BRs is 

illustrated in Figure 2.3. The main modifications that makes the apparatus suitably 

adapted for BR measurements are the insertion of fine mesh nickel grids that covers the 2 

mm diameter hole infront of the of the repeller plate, the removal of the skimmer, pulsing 
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of the repeller/extractor plates and the firing of the laser beam inside the source chamber 

at a very close distance (~1-2 mm) to the aperture of the supersonic nozzle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematic diagram for the ion imaging set up for the dissociation of 
Ethylamine cation. In this particular experiment, the same laser pulse was utilized 
for the preparation of the cation (REMPI laser) as well as for the dissociation of the 
state prepared cation. 

Figure 2.2: Excitation scheme for the 1+1 resonance enhanced multiphoton ionization 
(REMPI) of ethylamine cation at 233 nm. 
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The vacuum system and the chamber characteristics of the ion imaging 

experimental set-up have been reported in detail elsewhere57, so in this description, we 

mainly focus on the new modification that allow us to measure low-temperature BRs in 

the collision region of the supersonic expansion. A 2-mm diameter conical nickel 

skimmer that is located 2.5 cm downstream of the supersonic nozzle was removed, 

leaving a larger diameter aperture that separate the main chamber from the source 

chamber. The removal of the skimmer allowed higher gas densities of the newly born 

ions to be extracted into the main chamber where the ion optics are housed. Removing 

the skimmer therefore enabled us to detect the newly born ions at an improved signal to 

noise ratio. Inside the source chamber, the general valve supersonic nozzle was mounted 

in the opposite geometry so that the flat surface was at a close proximity to the focused 

REMPI laser beam.  

Following ionization of the neutral reactant gas through REMPI, the parent ions 

are accelerated out of the ionization region by the potential difference between the 

repeller and the extractor. The ion optics assembly consists of four thin electrodes 

(repeller, extractor, lens 1 and lens 2). The inside diameters for these electrodes are 2, 16, 

32, and 40 mm with respective spacing of 1.8, 2.1, and 2.9 cm. This four lens 

configuration without the grids was initially designed to obtain optimum velocity 

mapping conditions58 for ion imaging experiments. However, for our BR measurements, 

we configured and optimized our mass spectrometer in reference to the classic two field 

Wiley-McLaren design59. During the course of our experiments, the potential gradient 

applied across the repeller and the extractor was regularly adjusted in order to obtain a 

desired resolution in the time-of-flight data. The fine mesh nickel grid mounted in front 
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of the repeller provided homogeneous fields in the ion acceleration region. To ensure 

efficient extraction of newly born ions into the main chamber, a negative voltage bias of 

50V and 30 V were applied to the repeller and the extractor plates, respectively. Positive 

voltage pulses of 700 V and 500 V were then applied to the repeller and the extractor, 

respectively, in order to propel the ions to the detector and allow for mass selection and 

detection. Both plates had the same delay time of 30-50 µs and a width that was varied 

between 8-30 µs depending on the arrival time of the respective ions. Once the ions were 

in the extraction volume, lens 1 could then be occasionally used to focus the ions onto the 

detector by adjusting its voltages from 300 V to 500 V. Right in front of the supersonic 

nozzle (~1 mm from the hole), the reactant N2
+ ions were predominantly produced in 

their ground vibrational states via a 2 + 1 REMPI scheme at 202 nm60.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 2.3: Schematic diagram of the experimental approach using the modified 
velocity map ion imaging apparatus 
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Both plates had the same delay time of 30-50 µs and a width that was varied 

between 8-30 µs depending on the arrival time of the respective ions. Once the ions were 

in the extraction volume, lens 1 could then be occasionally used to focus the ions onto the 

detector by adjusting its voltages from 300 V to 500 V. Right in front of the supersonic 

nozzle (~1 mm from the hole), the reactant N2+ ions were predominantly produced in 

their ground vibrational states via a 2 + 1 REMPI scheme at 202 nm60.  

In order to record the N2 2+1 REMPI spectrum, the fundamental wavelength of 

the dye laser was scanned from 16,470 to 16474 cm-1. Figure 2.4 top and bottom shows 

the experimental and simulated REMPI spectrum, respectively. The simulated spectrum 

was obtained by fitting the literature N2 spectroscopic constants using the Pgopher 

program. There is a good agreement between the experimental and the simulated 

spectrum. A key point to note is that our main purpose in recording the REMPI spectrum 

presented in Figure 2 was to determine the rotational temperature. Under our 

experimental conditions therefore, a rotational temperature of 40 ± 5 K was determined 

after the fitting. The typical linewidth of the dye laser employed in our study was ~0.2 

cm-1. In addition to the pure N2 spectrum, we also recorded the spectrum using the CH3
+ 

signal that was formed from the reaction of N2
+ with CH4. Except for an increased 

intensity for the pure N2 spectrum, the two spectra are similar which is indicative of the 

lack of rotational dependence on the BRs. 

 To make sure that the measured BRs were not sensitive to laser delay, reactant 

concentration, pulse valve delay, extraction voltages, laser power and other factors, the 

conditions of the experiment were broadly explored and optimized. This was necessary 

since the main aim of our new apparatus was to measure BRs that were exclusively from 
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primary reactions. The timing of the experiment was carefully arranged to eliminate any 

cluster or the occurrence of secondary reactions. At first, the laser fires. After a variable 

delay (ca.300 µs), the pulsed valve driver opens and the supersonic expansion begins. In 

this case, the laser firing is referenced as time zero. The ions then flow downstream for a 

second delay time until they arrive at the TOF mass detector. No ion signal was observed 

when the laser was off-resonance. Additionally, there was no signal of other products 

(e.g. He+, C+, CH+, N+) suggesting plasma formation in the nozzle. Figure 2.4 presents a 

TOF spectrum for the charge-transfer reaction between N2
+ (v = 0) ions with Kr in the 

presence of Ar and He as buffer gases. There is no He+ (m/z =4) or Ar+ (m/z =40) signal 

in the spectrum which is a clear indication of an efficient CT that is purely induced by 

state-prepared ground state N2
+ ions with no plasma or contribution from vibrationally 

excited N2
+. The fact that we do not observe Ar+ signal is, indeed, a further confirmation 

that N2
+ ions are formed in the ground vibration state since we would expect to see an Ar+ 

signal in an instance where vibration excited N2
+ ions (v=1) are formed. The results on 

this TOF spectrum will be discussed further in the results and discussion section. 

Containing the newly born ions, the unskimmed molecular beam was allowed to 

flow downstream into the main chamber where the ion optics are housed. It is in the main 

chamber where both the ion extraction and the detection were accomplished. The plates 

were externally triggered at 10 Hz. After the extraction of the product ions, the ion cloud 

was then accelerated toward a 120 mm diameter chevron-type microchannel plates 

(MCPs) coupled to a fast P-47 phosphor screen. A CCD camera (SONY XC-ST50), 768 

X 494 pixels) was used to view the phosphor screen while a photomultiplier tube (PMT) 

captured the integrated TOF signal. In all our experiments, the MCP remained un-gated. 
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 The PMT signal was then sent to an oscilloscope for averaging and the final data 

transferred to the computer. In order to get the BRs, the area under each peak was 

determined after fitting the peaks using Gaussian function. Figure 5 shows a TOF 

spectrum for the reaction of N2
+ (v=0) with methane and a corresponding Gaussian fit. It 

should be mentioned here that the BRs obtained by a direct integration of the peak areas 

were not very different from the one obtained by fitting with the Gaussian. We therefore 

chose to use the Gaussian fitting as it gave more consistent BRs since it eliminated the 

uncertainty brought about by the tailing of the peaks at higher masses. 

2.2.1 Rotational Temperature determination 

The rotational temperature of 40 ± 5 was arrived at after a careful simulation 

based on the line-width of our dye laser. It is critical to mention that a supersonic jet is a 

non-equilibrium medium61. The non-thermal equilibrium properties of the jet are usually 

caused by a drop in the density and temperature with increasing distance from the nozzle. 

The thermal anisotropy inherent in free jet expansions therefore makes the definition of 

the reaction temperature complicated. Ideally, we would like to obtain experimental data 

on BRs where the reaction temperature remains nearly constant. As explained below, 

although we can confidently measure the rotational temperature and report the 

temperature under which the reactions take place, that temperature may not represent the 

real reaction time. To-date, its only in the CRESU experiment62 where this uncertainty in 

the reaction time has successfully been eliminated. According to M.A Smith and co-

workers61, at distances not too close to the nozzle, the reaction temperature of the product 

ions is expected to be equal. The distance from our nozzle to the point of ion extraction 

was maintained at 1-2 mm. On the other hand, the bias voltage for our repeller and the 
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extractor are less that -50 V and we do not expect to have substantial stray field-induced 

velocity that would lead to significant uncertainty in the rotational temperature. As can be 

seen from Figure 2.4, our experimental rotational populations deviate somewhat from a 

pure Boltzmann distribution, a well-known fact that occurs in rotational cooling in 

supersonic expansions63, 64. However, this non-Boltzmann nature of our rotational 

distribution did not seem have any impact on our measured BRs as they were found to be 

independent on the rotational level populated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Experimental and simulated 2+1 REMPI spectrum of 40 ± 5 K rotational  
distributions of N2 at 202 nm using a dye laser with a line width of  ~0.2 cm-1 in the 
visible  
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It is worth pointing out here that although our rotational temperature was recorded 

in the early part of the expansion where the collision frequency and energy are possibly 

high due to the high density and high translational temperatures we do not anticipate that 

the translational temperature is so different from the rotational temperature. Indeed, in 

their detailed study of free jet flow reactor dynamics, Smith and co-workers have shown 

with minimum uncertainty that at distances not very far from the nozzle, the rotational 

temperature of the ion is expected to be in equilibrium with the translational temperature. 

The main uncertainty of the free-jet low temperature measurements is due to poor 

understanding of rotational relaxation and equilibrium in free jet expansions. 

2.2.2 Charge transfer reaction 

 The TOF spectra presented in Figure 2.5 demonstrate the performance of 

the apparatus in measuring primary BR in a CT reaction between N2
+ and Kr. The 

reaction of N2
+ (v=0) with Kr is expected to produce Kr+ as the only product channel, 

hence this serves as an ideal system for testing our new set-up in terms of any possible 

contribution of Kr collisions with N2
+ (v=1) vibrationally-excited states. This experiment 

provides further corroborative evidence that there is no plasma-induced chemistry to 

hinder primary BR measurements. At thermal energy, this reaction exhibits anomalous 

vibrational energy dependence65. A dramatic vibrational enhancement has particularly 

been observed using the selected-ion flow technique (SIFT) coupled with a laser-induced 

fluorescence (LIF) detection scheme66. The measured rate constants are 1.0 (±0.6) Χ 10-

12, 2.8 (±0.3) Χ 10-12, 2.1 (±0.2) Χ 10-11, 5.1 (± 0.2) Χ10-11 and 8.3 (±0.4) Χ 10-11 

cm3molecule-1s-1 for N2
+ v=0, 1, 2, 3 and 4, respectively. In spite of the large 

exothermicity, the reaction of the N2(v=0) is so slow compared to the other N2
+(v≥1) 
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states. To eliminate any speculation that the more reactive N2
+ (v≥1) states were involved 

in any of our reactions, we used a He/Ar/Kr mixture in this experiment. The N2
+ (v=0) + 

Ar CT reaction67 is slightly endothermic (0.178 eV) and is known to be extremely slow at 

300 K with an associated rate constant of 2 Χ 10-13cm-3molecule-1s-1, hence it is not 

expected to an observable channel at our low-temperature conditions. However, the rate 

constants for the N2
+ (v=1-4) + Ar reactions are large and nearly independent of 

vibrational excitation68. In particular, the N2
+ (v=1) + Ar reaction68 is nearly resonant and 

very fast with an associated rate constant of 4 Χ 10-10 cm3molecule-1s-1. Therefore, in the 

presence of any N2
+ (v=1), Ar is expected to be much more reactive than Kr. The fact that 

we do not observe any Ar+ signal is a very clear indication of the pure state-specific 

nature of the low temperature N2
+-induced ion-molecule reactions performed in our 

newly commissioned experimental set-up. 

 

 

 

 

 

 

 

 

 

 
Figure 2.5: Time-of-flight spectrum of the charge transfer reaction of state-
prepared N2

+ (v=0) with Kr in the presence of He and Ar as buffer gases. 
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2.2.3. Hydrogen transfer reactions 

 Figure 2.6 (a) and (b) shows a TOF spectrum of ion-molecule reaction involving 

H2
+ + H2 and N2

+ + H2, respectively. The reaction of H2
+ with H2, being one of the 

simplest, well studied ion-molecule reactions where both atom and PT can occur69, 70, 

provides an excellent system to use as a test case for the performance of our new 

apparatus. On the other hand, the reaction of N2
+ with H2 allows us to probe a fast PT 

reaction involving a combination of a heavier reactant ion (N2
+) with a lighter neutral 

molecule (H2). In the case of H2 + H2 system, both PT and atom transfer processes are 

expected to contribute to the observed H3
+ signal but for the purpose of demonstrating the 

performance of the apparatus, we show the overall TOF that has a possible contribution 

from both processes without considering the use of deuterated species. H3
+ ions are 

formed by a direct mechanism where the bond rupture can occur at either reactant if there 

is a rapid equilibration of charge states. This mechanism is consistent with the dynamics 

that are anticipated from the qualitative features of the potential energy surface and the 

results of the previous trajectory calculations. Previous crossed beam, merged-beam and 

integral cross section studies of the H2
+ + H2 reaction also justify the aforementioned 

mechanism. All these previous experimental studies were done at high collision energies. 

At Ec =1.5 - 3.5 eV and with vibrational cold H2 as the reactant (v=0), the fraction of the 

available energy that appears as product recoil is estimated to be 31 - 32% with no strong 

dependence on collision energy. This means that just like in case of a typical exoergic 

reaction on an early downhill potential surface, two thirds of the available energy goes 

into internal excitation of H3
+. The TOF spectrum presented in Figure 6 (a) is a clear 

indication of the superior collection efficiency of both the reactant H2
+ as well as the 
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product H3
+ ions that is inherent in our apparatus. This is a particularly significant factor 

for the H3
+ product signal due to the large exoergicity (1.74 eV) between the zero point 

levels.  

The N2
+ + H2 reaction has been studied by a variety of ion-molecule techniques71, 

72. It is a representation of an exothermic (∆H = - 2.5 eV) atom transfer reaction that is 

characterized by the formation of a single product channel as can be clearly seen from out 

TOF spectrum. Randeniya and Smith73 have also reported kinetic energy dependent rate 

constants for this reaction at temperatures between 8-15 K using a flow jet reactor. In this 

study a minor product channel of N2H2
+ (< 5%) was observed. This channel was 

attributed to the occurrence of ternary association reaction in the beam. We did not 

observe any m/z 30 in our TOF, which is an additional evidence of the ability of our 

apparatus to exclusively measure primary branching of H-transfer type of reactions. In 

other related previous studies of this reaction71, N2
+ ions were prepared by electron 

bombardment and REMPI via high vibrational levels where electronically excited N2
+ 

ions were possible. In those ion-molecule experiments, H2
+ and N2

+ ions were observed; 

albeit at very low branching. Our TOF spectrum with only a single N2H
+ product channel 

is a further confirmation that our N2
+ preparation scheme is free from any possible 

contribution from the excited state N2 that can result in other processes such as CT 

leading to the formation of H2
+(v′) and N2

+ (v′). It is worth mentioning here that even 

though only one product channel is reported in the TOF spectrum, there is no doubt that 

our new strategy can be applied to determine product BRs of PT reactions where multiple 

product channels are involved.  
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2.3. Conclusion  

We have presented a new, quick and reliable experimental approach that is 

capable of determining primary product BRs of ion-molecule reactions involving CT, 

dissociative CT, PT and AT processes. The technique combines state-selective ion 

preparation with reaction in the course of supersonic nozzle expansion where the BRs are 

measured at low temperatures; albeit at non-thermal equilibrium conditions of the 

supersonic jet. The measured BRs are independent of the rotational levels of the reactant 

Figure 2.6: Time-of-flight spectrum of the (a) Hydrogen atom transfer resulting 
from the reaction of state-prepared N2

+ ions (v=0) with H2 and (b) H3
+ formation 

from the reaction of H2
+ with H2 at 201 nm 
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ion. The most critical factor in achieving high resolution TOF data in the present 

technique is the correct timing of the repeller and the extractor lenses with respect to the 

laser and pulse valve delays. This approach can be extended to routinely measure primary 

BRs where multiple product channels of dissociative charge transfer, proton transfer and 

atom transfer reaction are present. 
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CHAPTER THREE 

DIACETYLENE DIMER PHOTODISSOCIATION 

3.1. Introduction 

      As mentioned in Chapter one, Titan’s atmosphere exhibits an extensive aerosol haze 

believed to be composed of hydrocarbons and nitriles formed from its dense 

atmosphere74-76. Photochemistry and impact from magnetospheric electrons are believed 

to initiate a series of reactions involving the significant fraction of methane in the 

atmosphere. These pathways ultimately yield complex hydrocarbons and carbon-nitrogen 

based compounds through a series of reactions involving radicals and ions. These pro-

cesses have remained poorly understood to date, although the haze is known to play a 

vital role in Titan’s energy balance and atmospheric dynamics.  

Diacetylene (C4H2), the first of the series of polyynes, has long been recognized 

as a key species in Titan’s atmosphere because it absorbs light at much longer 

wavelengths, where the solar flux is significant75, 76 than acetylene, ethane or other 

important trace constituents of the atmosphere. Figure 3.1 present model profiles of 

ethynyl radical (C2H), acetylene, diacetylene, triacetylene and tetra-acetylene in Titan’s 

atmosphere. Diacetylene molecule has long been thought to be central to the formation of 

higher polyynes and polycyclic aromatic hydrocarbons (PAHs) that partially comprise the 

haze layer in Titan’s upper atmosphere76. Reactions of metastable, electronically excited 

diacetylene were believed to play an important role in the formation of Titan’s haze77-83. 

Recent work has suggested, however, that owing to its short lifetime and low dissociation 

rates, metastable diacetylene may not be significant in haze formation on Titan79.  In this 

chapter, we present an experimental and theoretical study of the photodissociation of the 
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diacetylene dimer under collisionless conditions, and show evidence that its 

photochemistry represents a novel, overlooked source of resonantly stabilized free 

radicals (RSFRs) in Titan’s atmosphere. These are considered crucial building blocks in 

the synthesis of polycyclic aromatic hydrocarbons (PAHs). Furthermore, the diacetylene 

dimer is just one example of a class of van-der-Waals complexes involving unsaturated 

hydrocarbons and nitriles that are likely to be sufficiently abundant to contribute to the 

hydrocarbon growth in Titan’s atmosphere upon photochemical activation. 

 

 

Figure 3: Model profiles of ethynyl radical (C2H), acetylene (C2H2), diacetylene (C4H2), 
Triacetylene (C6H2) and tetraacetylene (C8H2). PNAS, 106, 3816078  
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3.2. Experimental and computational Methods.  

Experimental 

 The crossed molecular and ion imaging techniques employed in the dimer 

dissociation were described in detail elsewhere, hence only the most pertinent and 

important details will be described here. In the crossed molecular beam experiment, a 

pulsed molecular beam of diacetylene seeded in argon carrier gas was generated by su-

personic expansion of a 5% mixture through a piezoelectric pulsed valve operating at 60 

Hz and 80 µs pulses with 500 Torr backing pressure. A four-slot chopper wheel located 

between the skimmer and the cold shield selects a segment of the seeded beam with a 

peak velocity of 567 ±2 m s-1 and a speed ratio S of 8.3 ±0.1. The expanded beam was 

skimmed twice before entering the main chamber, where it was crossed at 90° by a 193 

nm photolysis laser. The time-of-flight spectra of the photo fragments were recorded in 

the plane of both molecular and laser beams using a rotatable quadrupole mass 

spectrometer with an electron-impact ionizer. Typically, the TOF spectra were recorded 

at lab angles in the range of 12°-35°. For all experiments, the delay time between the 

pulsed valve and the laser was set such that the diacetylene dimer signal was maximized 

relative to monomer and higher clusters. In trial experiments the laser was linearly 

polarized using a series of quartz plates at Brewster’s angle. None of the photochemical 

signals were found to vary with laser polarization, so the experiments shown here were 

conducted with the laser unpolarized. 

 Diacetylene was synthesized using the method developed by Armitage et al84. 

C4H2 was produced and collected in a cold trap at –70 °C. After the synthesis, the sample 

was immediately transferred to a cylinder by slowly warming up the sample under 
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vacuum. The cylinder was then filled to a total pressure of 3 bars with argon to produce 

5% diacetylene mixture. The infrared absorption spectrum and mass spectrum showed 

high purity (> 99.5 %) using this synthesis. 

 The analysis of the TOF spectra at different laboratory angles was performed with 

a forward convolution program85. A simulation of all measured TOF spectra was 

generated using an input center-of-mass P (E) distribution which was then convoluted 

over various instrument parameters such as beam velocity, laboratory angle, divergence 

of the beam and so on. The P(E) distribution was iteratively adjusted until a satisfactory 

simulation was achieved.  

The diacetylene dimer photodissociation to the product at m/z = 51 (C4H3
+) was 

also performed in DC slice imaging experiments. Total translational energy 

distributions were derived from the sliced images by direct integration in velocity  space, 

followed by conversion of the velocity distributions to  translational energy86. After 

carefully tuning the delay time between the diacetylene molecular beam and laser firing, 

the diacetylene dimer segments in the molecular beam were picked up and dissociated at 

193 nm. Multiphoton ionization of the C4H3 product by the 193nm laser allowed for 

detection. We were unable to detect m/z = 99 with this approach. Our detection of m/z = 

51 may be through accidental 1+1 resonances, so the inability to detect m/z = 99 is not 

particularly surprising, as such resonances may not be available. Alternatively, ionization 

may not compete effectively with dissociation of the C8H3 neutral or other decay 

pathways in this case. 
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Computational details 

 Vertical excitation energies and transition dipole moments of diacetylene dimers 

were calculated using the equation-of-motion coupled clusters (EOM-CCSD) method87, 88  

with Dunning’s augmented polarized triple-zeta correlation-consistent (aug-cc-pVTZ) 

basis set89 . For several lower energy excited states, we have also carried out internally-

contracted multireference configuration interaction MRCI calculations with Davidson’s 

corrections for quadruple excitations (MRCI+Q) and with active spaces including 8 

electrons distributed on 8 orbitals (8,8) and 16 electrons on 12 orbitals (16,12). The (16, 

12) active space involved all π electrons of the two diacetylene monomer units. The 

MRCI calculations were performed with the same aug-cc-pVTZ basis set. We considered 

two different structures of the diacetylene dimer, T-shaped and parallel-slipped; their 

optimized geometries were taken from the most accurate results by Hopkins et al90. at the 

CCSD(T)/TZ2P(f,d)++ level of theory. Transition dipole moments were also computed at 

the complete-active-space self-consistent field CASSCF (16,12)/aug-cc-pVTZ level of 

theory91, 92. For comparison, similar EOM-CCSD, MRCI, and CASSCF were performed 

for the isolated diacetylene molecule. In this case, we used (4, 4) and (8, 10) active spaces 

for MRCI and CASSCF. All ab initio calculations of excitation energies and transition 

dipole moments were carried out employing the MOLPRO 2006 program package92  

 To unravel the reaction mechanism for the formation of the observed C8H3 + H 

and C4H3 + C4H products in photodissociation of diacetylene dimer, we performed ab 

initio calculations of the ground state potential energy surface of C8H4 for various 

pathways leading from (C4H2)2 to the products. Since the reaction paths lead from the 

species with a closed-shell singlet wave function (in the dimer) to the products having 
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overall open-shell singlet wave functions, relevant intermediates and transition states may 

have a biradical character and therefore the use of multireference methods for the 

electronic structure calculations is required. Hence, we carried out geometry optimization 

and vibrational frequency calculations for various C8H4 species by employing the 

CASSCF approach  with the active space consisting of 12 electrons distributed on 10 

orbitals and the 6-311G** basis set, CASSCF(12,10)/6-311G**, and utilizing the Dalton 

2 program package. Then, single-point relative energies were refined at the CASSCF 

optimized geometries using the multireference second-order perturbation theory CASPT2 

method implemented in MOLPRO 2006 2 with the same active space and the cc-pVTZ 

basis set. 

3.3. Results 

 The diacetylene dimer was generated in a supersonic molecular beam, with 

photodissociation products probed via photofragment translational spectroscopy using 

two complementary approaches: universal mass spectrometric detection after electron 

impact ionization85 and non-resonant multiphoton ionization of the neutral products 

employing imaging detection86. The irradiation of the diacetylene beam at 193 nm gave 

rise to strong signals that were found to be associated with the photodissociation of the 

diacetylene dimer. Utilizing a universal mass spectrometric detector, signal at a variety of 

mass-to-charge ratios (m/z) could be attributed to two reaction channels with unique 

contributions observed at m/z = 51 (C4H3
+) and m/z = 99 (C8H3

+) (Figure 3.1). For 

completeness, we should mention that the dimer dissociation channel to form two diace-

tylene monomers (m/z = 50) was also observed. However, it is not discussed here in 

detail since the main interest of this project is to investigate the formation of RSFRs from 
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the diacetylene dimers. Formally, channels at m/z = 51 (C4H3
+) and m/z = 99 (C8H3

+) 

correspond to the hydrogen loss and hydrogen transfer reactions 3.1 and 3.2, respectively, 

in the photodissociation process:  

                 (C4H2)2 + hν193nm → C8H3 + H........................3.1   

       (C4H2)2 + hν193nm → C4H3 + C4H.......................3.2   

When examined as a function of the delay time between the pulsed molecular beam valve 

and the laser, the profiles of the product signals closely tracked the dimer appearance at 

m/z=100, but not that of the monomer or higher clusters.  These data are shown in Figure 

3.2.  

 

Figure 3.2: Signals on-axis in the molecular beam at indicated mass vs. delay between 
laser and pulsed valve. The monomer contribution has been reduced by a factor of 80, 
while the other contributions have been normalized at long delay times. 
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 Representative time-of-flight (TOF) spectra at m/z = 51 and at m/z = 99 are 

shown in Figure 3.3. This signal corresponds to products following hydrogen atom 

transfer from one diacetylene molecule to the other (reaction (2); m/z = 51) and from the 

hydrogen atom loss from the dimer (reaction (1); m/z = 99), respectively. The Newton 

diagrams are also shown to rationalize the maximum scattering range of the heavy 

reaction products of reactions (1) and (2). In these diagrams, the velocity of the 

diacetylene dimer beam is 567 m s-1; the limiting circles depict the maximum recoil 

velocity calculated from the excitation energy at 193 nm and the reaction energies of the 

corresponding reaction channels 3.1 and 3.2 as discussed in detail below. A forward 

convolution routine was used to fit the experimental data. Here, TOF spectra at m/z = 99 

(C8H3) and m/z = 51 (C4H3) had to be fitted with a counter fragment of m/z = 1 (H) and 

m/z = 49 (C4H) (reactions (1) and (2), respectively); the total mass of both reaction 

products of channels (1) and (2) of 100 amu also indicate that this signal originates from 

the diacetylene dimer. Likewise, the TOF spectra at m/z = 99 and 49 are distinct and do 

not overlap, demonstrating that at least two distinct channels are open in the photodisso-

ciation of the diacetylene dimer at 193 nm. This finding alone demonstrates that both 

channels lead to heavy hydrocarbon products of the gross formula C8H3 (reaction (1)) and 

C4H3 (reaction (2)). The corresponding center-of-mass translational energy (P(E)) 

distributions for both channels are also shown in Figure 3.3. The simulated TOF spectra 

are shown as the solid lines, and the circles are the experimental data.  

 The product at m/z = 51 ((C4H3)) was also detected in a separate DC sliced ion 

imaging experiment. The image of the C4H3
+ (m/z = 51) photofragment was recorded and 

is shown as an inset in the center-of-mass translational distribution of m/z = 51 in Figure 
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3.3. In this case, the translational energy distributions were obtained by direct integration 

of the imaging data86. Both translational energy distributions extracted from 

photodissociation experiments in the two different experimental setups agree well, and 

show both a distribution maximum peaking away from zero translational energy, but also 

a high energy cutoff at about 2.3 kcal mol-1. Therefore, the TOF spectra recorded at m/z = 

51 and data fitting support evidence of channel 3.2, i.e. the formation of two radical 

products with the gross formulae of C4H3 and C4H. 

 The TOF spectrum recorded at m/z = 99 (C8H3
+) obtained with the universal 

detector shows that the atomic hydrogen loss channel, reaction 3.1, is also open in the 

photodissociation process. It is important to stress that we did not observe any signal at 

m/z = 99 at angles larger than 12°. At smaller laboratory angles, the signal was 

contaminated by background coming from the molecular beam itself. For m/z=99, we 

thus only show the TOF spectrum at 12°. The total translational energy obtained from the 

forward convolution fitting is also shown in Fig. 3.3; data are not reported below 13 kcal 

mol-1 because the results at 12° are not sensitive to slower recoiling fragments. In contrast 

to the translational energy distribution for the hydrogen atom transfer channel (reaction 

3.2), the translational energy distribution for the hydrogen atom loss channel 3.1 exhibits 

a broad distribution and extends to a higher kinetic energy release of about 25 kcal mol-1. 
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Having established the existence of two pathways 3.1 and 3.2 to form two open-

shell hydrocarbon radicals in the photodissociation of diacetylene dimers, via hydrogen 

transfer and hydrogen loss, of the generic formulae C8H3 and C4H3, we now examine the 

underlying photodissociation dynamics by considering the experimental results in light of 

high-level electronic structure calculations. This also helps to establish the extent to 

Figure 3.3: Representative TOF spectra recorded at mass-to-charge (m/z) of m/z = 51 
(C4H3

+) and m/z = 99 (C8H3
+) fragments taken at indicated laboratory angles. The 

circles represent the data, while the solid lines depict the simulation based on the P(E)s, 
also shown in the figure. For the m/z = 51 case, ion imaging results are also shown, with 
the derived P(E) indicated by the lighter line.  
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which the newly formed molecules belong to the class of resonantly stabilized free 

radicals (RSFRs). This link is crucial to suggest possible structures of the isomers 

produced and to transfer these findings from the laboratory to the ‘real’ atmosphere of 

Titan. Earlier high-level electronic structure calculations by Hopkins et al.90 suggest that 

the diacetylene dimer can either exist in a T-shaped or parallel-slipped configuration 

(Figure 3, Hopkins et al. 200790). The T-shaped dimer belongs to the C2v symmetry point 

group whereas the parallel-slipped dimer has C2h symmetry. The results of these 

calculations90 give binding energies of T-shaped and parallel-slipped dimers of 1.63±0.08 

kcal mol-1 and 1.33±0.12 kcal mol-1, respectively, relative to two separated diacetylene 

monomers, making the T-shaped structure slightly more stable than the parallel-slipped 

one. According to the present ab initio calculations, electronic transitions in the dimers at 

193 nm include excitation to the 11B2, 2
1A1, 3

1A2, and 41A2 states for the T-shaped form 

and 11Bu, 2
1Au, 2

1Ag, and 21Bg for the parallel-slipped structure. Here the transitions to 

the 11B2, 2
1A1, 1

1Bu, and 21Au states are electronically allowed, but those to 31A2, 4
1A2, 

21Ag, and 21Bg are forbidden. Nevertheless, a strong vibronic coupling induced by the 

CCC and CCH bending modes is expected to contribute significantly to oscillator 

strengths of all these transitions and to make them vibronically allowed. The calculated 

vertical excitation energies for these states are about 5.5-5.6 eV; based on calculations of 

Franck-Condon factors, their absorption spectra represent vibrational progressions with 

the origin around 5.2-5.3 eV (the adiabatic excitation energy) and spaced by about 2300 

cm-1. Therefore, in addition to the electronic excitation, the absorption of a 193 nm 

photon produces vibrational excitation of the normal modes corresponding to the 
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symmetric stretch of two triple carbon-carbon bonds coupled with the single carbon-

carbon bond stretch with the frequency of about 2300 cm-1.  

 The electronic structure calculations suggest further that photochemical activation 

by a 193 nm photon (148 kcal mol-1) is likely followed by internal conversion (IC) to the 

(highly vibrationally excited) ground electronic state. Similarly to diacetylene 

monomer79, IC is expected to be fast. Figure 3.4 shows the stationary points on the 

potential energy surface involved in the photochemistry of the diacetylene dimer. On the 

ground state potential energy surface, the individual diacetylene molecules within the 

dimers can be coupled via a carbon-carbon bond formation of at the C4-C4 and C4-C3 

positions leading to biradical intermediates [i1] and [i2], respectively, with [i1] being 

thermodynamically more stable by 15 kcal mol-1 compared to [i2] is important to stress 

that the energy of the transition states involved lie lower than the total available energy of 

the system. Formally, the parallel-slipped dimer correlates with the transition states 

leading to [i1] and [i2]. However, since the binding energies of the T-shaped and parallel-

slipped dimers are low and the interaction between their monomer units is weak, 

isomerization between both structures is expected to be facile. The barrier for the 

parallel-slipped → T-shaped rearrangement cannot exceed 1.3 kcal mol-1 (the binding 

energy of the parallel-slipped structure), but it is likely to be much lower. Both [i1] and 

[i2] intermediates can isomerize via hydrogen shifts leading to [i3] and [i4], respectively. 

Due to the change of the wave function character from the biradicals to the closed shell 

singlets, both structures are significantly more stable than [i1] and [i2]. Once again, the 

inherent barriers to hydrogen migration range well below the total available energy.  
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Figure 3.4: Potential energy surface involved in the photochemistry of the diacetylene 
dimer at 193 nm. The energies were calculated at the CASPT2(12,10)/cc-
pVTZ//CASSCF(12,10)/6-311G**+ ZPE(CASSCF(12,10)/6-311G**) level of theory.  
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The absolute barrier heights of 14–20 kcal mol-1 are reasonable when compared to 

similar closed shell, unsaturated hydrocarbon molecules (Mebel et al. 2006)). What is the 

fate of these reaction intermediates? Considering reactions (1) and (2), intermediate [i3] 

can either lose a hydrogen atom from the C3 position leading to a doublet C8H3 radical 

p1 or undergo carbon-carbon bond rupture forming the n-C4H3 plus C4H radicals. In 

intermediate [i4], two decomposition pathways were identified as well: an atomic 

hydrogen loss leading to a C8H3 isomer p2 and also a carbon-carbon bond rupture 

forming the i-C4H3 radical plus the 1,3-butadienyl radical (C4H). All processes involve 

only simple bond ruptures without exit barriers. Note that among the C8H3 isomers, p1 is 

thermodynamically more stable by about 12 kcal mol-1 compared to p2. The overall 

processes to form these isomers from the diacetylene dimers were found to be endoergic 

by 64 and 76 kcal mol-1, for p1 and p2, respectively. These energies are well below the 

total available energy of the system of 148 kcal mol-1. 

 Considering the experimental data for the hydrogen loss channel (reaction 3.2), 

the corresponding center-of-mass translational energy distribution (Figure 3.3) is broad, 

and around 80% of the available energy goes to internal excitation of the C8H3 products. 

This is consistent with the hydrogen loss translational energy distribution observed in the 

monomer79, but those have only been reported at higher excitation energies, around 10.2 

eV and above. This again highlights the important distinction between these monomer 

and dimer systems: the hydrogen atom elimination threshold for the dimer is 2.5 -3.0 eV 

lower than for the diacetylene monomer. This is because the weak van-der-Waals bond in 

the dimer becomes a covalent bond in the product radical, thus gaining the bond energy 

and compensating partly for the large endoergicity of the bond fission. For the hydrogen 
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atom transfer channel, which leads to two C4 radical species, the center-of-mass 

translational energy distribution is extremely low (<2 kcal mol-1). This finding suggests 

that the effective transfer occurs with little direct interaction between the two monomers. 

This mechanism may be analogous to the dynamics of deuterium atom release reported in 

water dimer photodissociation93. A closer investigation of the overall reaction threshold 

exposes unique features of the dimer photodissociation. Here, the atomic hydrogen trans-

fer mechanisms in the dimer, giving two C4 radicals, have a threshold of only 4.12 eV. 

No analogous channel exists in the monomer. A number of C4H3 product isomers are 

accessible94; the lowest energy pathways are shown in Fig. 3.4 implying most likely 

formation of n-C4H3 or i-C4H3. The very low observed translational energy release does 

not rule out any of these. It should be noted that such reactions of dimers are not 

unprecedented. Previous studies have demonstrated “sequential” and “concerted” 

dissociation of van der Waals complexes such as hydrogen iodide (HI) clusters95, dimers 

of carbonylsulfide (OCS) and carbondisulfide (CS2), and the molecular oxygen (O2) 

dimer. An overview of this literature is given in a recent study by Vidma et al. 

 

3.4. Discussion 

 Our combined experiments and calculations provide evidence that upon photoly-

sis at 193 nm, the diacetylene dimer exhibits two unique reaction pathways leading to 

resonantly stabilized free radicals (RSFRs), pathways that are absent in the 

photodissociation of the diacetylene monomer. These are: the synthesis of the C8H3 

isomers p1 and/or p2 via atomic hydrogen loss processes (reaction 3.1) and the formation 

of n-/i-C4H3 isomers plus C4H via carbon-carbon bond rupture in the reaction 
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intermediates (reaction 3.2). Both pathways involved an initial formation of a carbon-

carbon bond between the monomer units in the T-shaped and parallel-slipped dimer on 

the ground electronic state surface followed by an intermolecular hydrogen transfer. 

These processes represent direct evidence that the photoexcitation of weakly bound van-

der-Waals structures such as the diacetylene dimer can lead to a hydrocarbon growth, in 

this case to the formation of RSFRs. This is in strong contrast to the diacetylene mono-

mer, in which only photodestruction to the C4H radical plus atomic hydrogen was obser-

ved. 

  Having verified hydrocarbon growth to form resonantly stabilized free radicals 

(RSFRs) in diacetylene dimer upon photoexcitation at 193 nm, we apply our findings 

now to the atmosphere of Titan. Previous models of Titan’s atmosphere underline the 

crucial importance of RSFRs in the underlying reaction schemes leading to PAH 

formation18, 76. Here, radicals such as C4H3, C6H3, and C8H3 were postulated as important 

transient species formed via addition of a hydrogen atom to a polyyne such as diacetylene 

(reaction (R1); Table 3.1). However, two major factors inhibit these reactions. First, 

classical activation barriers of the addition processes range from 2 to about 10 kcal mol-1. 

Considering the temperature in Titan’s stratosphere of about 120 K, the significant 

activation energy blocks the addition process at the outset. Secondly, the [C4H3]* reaction 

intermediate is internally excited; under the low pressure regime in Titan’s stratosphere 

of 10 mbar, a collisional stabilization of this complex via reaction (R2) by a bath 

molecule from the atmosphere, predominantly molecular nitrogen, is unlikely at these 

temperature and pressure conditions. A recent calculation by Klippenstein & Miller96 



www.manaraa.com

53 

 

suggested very small rate constants of only about 1.8 × 10-26 cm6s-1 at 250 K to form 

C4H3 isomers.  

Considering the C8H3 radicals, the situation is even more complicated. Here, 

recent studies indicated that polyynes such as the tetraacetylene precursor itself 

(HCCCCCCCCH; C8H2) can be synthesized via fast, barrierless reactions of diacetylene 

with ethynyl radicals (CCH) as formed in the photodissociation of acetylene at 

wavelengths less than 217 nm, followed by a consecutive reaction of a second ethynyl 

radical with triacetylene (HCCCCCCH; C6H2) (reaction sequence (R4)–(R7)). The 

overall reaction (R8) formally converts two acetylene and one diacetylene molecule to 

tetraacetylene plus four hydrogen atoms. Alternatively, a reaction sequence could involve 

the reaction of photolytically generated 1,3-butadienyl radicals (reaction (R9)) with a 

diacetylene molecule (reaction (R10). In analogy to reactions (R1) and (R2), the tetraace-

tylene molecule could only add a hydrogen atom over a significant barrier (reaction 

(R12)) followed by stabilization of the reaction intermediate (R13). Although the initial 

formation of tetraacetylene is fast, once again the hydrogen atom addition and 

stabilization of the intermediate, reactions (R12) and (R13), under Titan’s atmospheric 

conditions are blocked. Therefore, the postulated reaction sequences (R1) – (R14) cannot 

lead to the formation of RSFRs in Titan’s atmosphere due to the large activation energy, 

inefficient three-body processes, and the inherent small rate constants.  
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Table 3.1: Reaction schemes in Titan’s atmosphere postulated to be involved in the 
formation of resonantly stabilized free radicals via hydrogen atom addition and three 
body reaction sequences. 
 
 

 
  The diacetylene dimer is just one example of an overlooked reaction class invol-

ving van-der-Waals complexes consisting of polyynes and possibly cyanoacetylenes and 

aromatics that are likely to be sufficiently abundant to contribute to hydrocarbon growth 

in Titan’s atmosphere upon photochemical activation. Analogous behavior is expected 

for acetylene, for example, and this is supported by calculations of the acetylene plus 

acetylene potential energy surface . The acetylene dimer has an even stronger bond than 

the diacetylene dimer; therefore, the mixing ratios are expected to be much higher in 

Titan’s atmosphere for acetylene than diacetylene. Based on calculated equilibrium 

constants, we estimate a dimer mixing ratio of 6×10-14 for diacetylene dimer and 1×10-7 

for the acetylene dimer in Titan’s atmosphere at the 10 mbar level. The mixed acetylene-

diacetylene dimer binding energy is comparable to that of diacetylene, but owing to the 

higher acetylene abundance on Titan, the mixed dimer mixing ratio is expected to rough-

ly half that of the diacetylene monomer itself.  
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3.5. Conclusions and implications to Titan’s atmosphere 

 The photodissociation of weakly bound van-der-Waals clusters of acetylenes and 

polyyacetylenes offer a mechanism to synthesize resonantly stabilized free radicals – 

building blocks toward the formation of PAHs - via a versatile one step pathway in 

Titan’s low tempertature atmosphere. This presents a novel, neglected reaction class in 

chemical models simulating the growth of PAHs and of the organic haze layers on Titan 

and elsewhere in the outer solar system. Consequently, given the profound differences in 

photochemical behavior shown here, it is likely that the photodissociation of polyyne 

dimers such as reactions 3.1 and 3.2 leads to a more efficient formation of RSFRs than 

consecutive reactions involving hydrogen addition and three body reaction sequences 

(R1) – (R14) in Titan’s atmosphere. As the mixing ratios vary strongly with temperature 

and pressure, it will be important to include these complexes together with the 

wavelength-dependent quantum yield in future photochemical models to gauge the full 

extent of their role in the hydrocarbon growth on Titan.   
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CHAPTER FOUR 

PHOTODISSOCIATION OF ETHYLAMINE CATION 

4.1 Introduction 

Despite being in its infancy, research on Titan’s ionospheric chemistry has been a 

subject of intense scrutiny 97-101 since the surprising revelation of its rich chemical 

composition by the Ion Neutral Mass Spectrometer (INMS) on board the Cassini 

spacecraft 102, 103. The work presented in this chapter has been guided by the hypothesis 

that primary photodissociation of ions under collisionless conditions, in concert with 

high-level ab initio calculations, can allow us to investigate the formation mechanisms, 

reaction pathways, and properties of key species detected by Cassini, even if the subject 

photodissociation per se may not be directly relevant. We will expand on this point in the 

Discussion. 

Studies on the photodissociation of ethylamine (ETA) cation in the ultraviolet 

(UV) region are rather scarce. As one of the first members of simple alkyl amines, ETA 

Rydberg states are similar to those of methylamine but due to the presence of additional 

carbon atoms, the number of dissociative 3s Rydberg states in ETA  is higher 104, 105,33.  In 

a series of classical investigations by Lorquet and Leclerc104 using quantum mechanical 

treatments, it was demonstrated that CH3CH2NH2
+ ions, in their ground state, dissociate 

into a CH3 radical and a CH2NH2
+ ion when the vibrational energy in the C-C bond 

exceeds 0.9 eV.  Using a time of flight mass spectrometer, multiphoton dissociation of 

ETA cation at 450 and 532 nm was found to yield m/z = 28, 30, and 44 as the major 

peaks with m/z=30 dominating at both wavelengths 106. No parent ion was observed at 

450 nm while at 532 nm, the m/z = 44 and m/z 28 signals were found to increase. 
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Inarguably, since the electronic clouds of α- C atom in the ion shifts towards N atom, no 

other fragmentation pathway is expected to compete with the β- (C-C) bond, as was also 

demonstrated by an electron impact ionization study of aliphatic amines107.  Bodi et al., 

107 in  a Threshold Photoion Photoelectron Coincidence Spectroscopy (TPEPICO) study, 

reported that the dominant reaction generates CH2NH2
+ + CH3 and H-loss product 

channels, with the H-loss product channel accounting for less than 10 %.  The onset for 

H-loss was calculated to be 9.627 eV, 135 meV below the computed onset for the CH3 

loss. The conclusion from this observation was that the H-loss channel was slow, 

probably as a result of tunneling. In another related study aimed at obtaining an accurate 

heat of formation of ethylidenimmonium cation (CH3CHNH2
+), Harvey and Traeger 108 

found the H-loss to be the lowest energy fragmentation pathway of EA cation with an 

appearance energy of  9.61 eV.  However, no direct laboratory investigation of ETA 

cation dissociation in the UV under collisionless conditions in a molecular beam has been 

reported. In addition, no theoretical investigations have mapped out a detailed potential 

energy surface with the various primary and secondary reaction pathways, some of which 

leads to direct observation of product channels that have been detected in Titan’s 

ionosphere. 

Prior to the ethylamine cation study, our group had investigated the 

photodissociation of methylamine cation as a potential starting molecule to explore the 

features of the potential surface that may lead to the formation of species that are relevant 

to Titan’s ionosphere 98.  It is reasonable to envision that although ETA cation has not 

been detected in Titan’s upper atmosphere, it is yet another excellent starting molecule 

that can aid in understanding the ion-molecule reactions related to the formation and 
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reactions of the dominant HCNH+ ion and other isomers depicted on its potential energy 

surface. In this paper, therefore, we present results on ETA cation photodissociation as a 

second prototypical amine cation with a rich potential surface that has several primary 

and secondary product channels that can readily be investigated experimentally using our 

Direct current (DC) slice imaging technique via 1+1 resonance enhanced multiphoton 

ionization (REMPI) strategy.  

To this end, a combined experimental and theoretical investigation on ETA cation 

dissociation at 233 nm using Direct current (DC) slice imaging and high level ab initio 

calculation, respectively, is reported. These experimental results on the photodissociation 

of ETA cation are not intended to document the full suite of related photochemical 

processes in Titan’s ionosphere. Nevertheless, within the theoretical realm provided by 

the high level ab initio calculations, the ion imaging results strive to reveal and explore 

important aspects and isolate key reaction pathways and phenomena on the potential 

surface. Although primary photodissociation of the cation is our main goal in this study, 

our motivation comes from, on one hand, the need to identify important secondary 

decomposition reaction pathways on the potential surface, and on the other hand, our 

interest to explore excited state dynamics such as the HCNH+ formation that is reported 

in this paper. The implications for the chemistry of HCNH+ formation and haze formation 

in Titan’s atmosphere will also be considered. 
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4.2 Experimental and Computational Details 

Experimental 

 Ethylamine cation dissociation was carried out using a velocity map imaging 

apparatus58, 109 that was optimized for DC slice imaging58, 110. Since the details of this 

technique have been discussed in details elsewhere and in Chapter two only the important 

features that are key to the Ethylamine cation experiment will be briefly mentioned here. 

A pulsed supersonic molecular beam containing ~1% ethylamine (stated purity >99.0%) 

seeded in Helium was expanded from a pulsed valve into a differentially pumped source 

chamber at a backing pressure of ~ 2 bar. The wavelength of the laser light employed in 

this study was produced by frequency doubling of the output of a tunable, narrow-

linewidth (0.07 cm-1) OPO laser system (Spectra-Physics MOPO HF). The MOPO HF 

was pumped by the third harmonic of a seeded Nd:YAG laser operating at 10 HZ. The 

vertically polarized laser beam was then focused (20 cm focal length) into the interaction 

region. The laser polarization was parallel to the detector plane, while the typical output 

power employed was ~ 0.1 mJ /pulse. Calibration of the ion images was achieved by 

using experimentally obtained images of CO (v=0, J=65) in the photodissociation of 

OCS at 230 nm under identical conditions. 

Computational details 

Molecular geometries and vibrational frequencies of local minima and transition 

states of CH2CH2NH2
+ cation were calculated at the hybrid density functional B3LYP/6-

311** level of theory111,112 using the GAUSSIAN 98 package113.  
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Figure  4.1: Stationary points on the potential energy surface involved in the photochemistry of 
the ethylamine cation at 233 nm. The energies were calculated at theB3LYP/6-311** and CCSD 

(T)/CBS level of theory. Energy values are in kcal/mol. 
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Relative energies of various isomers and species on the ground state potential 

surface of ETA cation were refined utilizing the coupled cluster CCSD(T) level of 

theory114-117 with Dunning’s correlation-consistent cc-pVDZ, cc-pVTZ, cc-pVQZ, and 

cc-pV5Z basis sets118 and with further extrapolation to the complete basis set  (CBS) 

limit119. The CCSD(T) calculations were performed using the MOLPRO package120. The 

results of the calculations are summarized in Figure 4.1, which will guide our 

presentation and discussion of the experimental results. 

4.3 Results 

Ethylamine exhibits a broad, structured absorption spectrum between 219 nm to 

240 nm, with the most intense peaks appearing at 229.5 and 233.4 nm105, 121. The lowest 

lying singlet excited states of ethylamine are expected to be n-3s Rydberg in character121, 

122. One photon excitation of neutral ETA at 233.3 nm is associated with the first member 

of the amine-wagging vibrational progression105. In this case, we suspect that ionization 

from the Rydberg level is dominated by the diagonal (v+=v’) transition, although we 

have not confirmed this with photoelectron spectroscopy. The absorption of an additional 

233 nm photon by the state-prepared ETA cation leads to subsequent fragmentation, 

where both primary and secondary product channels are observed. The main channels 

observed in our experiment are H-loss and formation of HCNH+ .  

H-loss Channel. The H-loss ion image and the corresponding total translational 

energy distribution are presented in Figure 4.2. The ion image has two components, both 

of which have an isotropic angular distribution. This ion image gives a bimodal total 

translational energy distribution upon analysis. The total available energy at 233.3 nm is 

123 kcal/mol. In the bimodal translational energy distribution, one component extends to 
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the limit of the available energy for formation of the CH3CHNH2
+ product but drops off 

on the low energy side at about 11.5 kcal/mol. A second slow component peaks at very 

low energy (2.3-4.6 kcal/mol) and drops rapidly at 11 kcal/mol and beyond. Based on the 

potential energy surface profile presented in Figure 1, two H loss pathways are possible: 

one is the lowest energy process of all, with a threshold of about 17 kcal/mol: this clearly 

corresponds to the outer ring in the H-loss image. There is a “hole” in the image for that 

product, because any of that isomer formed with less than ~20 kcal/mol in translation can 

undergo secondary decomposition via several pathways and cannot remain bound. The 

second, very slow isomer must then correspond to the triplet CH3CH2NH+ product 

channel at high energy. The H-loss translational distribution is consistent with simple 

bond fission without an exit barrier following an internal excitation to the ground state of 

the cation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: H-loss ion image and the associated translational energy distribution 
for ethylamine cation dissociation at 233 nm. 
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Formation of m/z=42. Figure 4.3 shows the DC sliced ion image and the 

associated translational energy distribution for the formation of m/z =42 product channel. 

The results show an isotropic angular distribution which is typical of ground state 

statistical dissociation following internal conversion. In order to understand and identify 

the dissociation pathway leading to the formation of m/z = 42 in our experiment, we turn 

to the stationary points and reaction pathways of the ground state cation presented in 

Figure 1. The m/z=42 product must come from loss of H followed by loss of H2. As this 

involves a secondary (3-body) decomposition process, we cannot directly reconstruct the 

total translational energy from measurement of one fragment only.       

However, as the initial step is loss of H, we assume negligible translational energy 

in the m/z=43 product, and obtain the translational energy distribution in Figure 3 by 

assuming H2 as the cofragment.  Starting from the H loss product CH3CHNH2
+, there are 

two possible routes for the formation of m/z 42. One of these involves H2 loss over a 

barrier of 95 kcal/mol , with a  reverse barrier of 25 kcal/mol. From our total available 

energy of 123 kcal/mol, we find that this channel is open. A perusal of the total 

translational energy distribution presented in Figure 3 show the distribution peaking away 

from zero, with a maximum peak at 5.8 kcal/mol that extends all the way out to 45 

kcal/mol; the maximum limit for the formation of CH2CNH2
+ product channel. On the 

other hand, the CH3CHNH2
+ isomer can undergo H2 loss through a barrier of 110 

kcal/mol to form CH3CNH+ + H2, a reverse barrier of 57 kcal/mol. Although this channel 

is about 16 kcal/mol below the CH2CNH2
+ + H + H2 channel, the barrier associated with 

it is 15 kcal/mol higher than that the former; therefore, it is not expected to be 

competitive. Our DC sliced ion imaging results eliminates this product channel as it 
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would have be expected to show a large fraction of this barrier energy in translation, 

which we do not observe. 

 

 

Figure 4.3: H+H2 loss image and the associated translational energy distribution for 
CH3CH2NH2

+ cation dissociation at 233.3 nm 
 

Formation of m/z=28 (HCNH
+
). We now turn to the results for the formation of 

the m/z=28 (HCNH+) product channel. Apart from the parent ion (m/z=45) signal, 

m/z=28 was observed as the most intense peak in our time-of-flight spectrum. It is worth 

mentioning that the dissociation of CH3CH2NH2
+ cation was investigated at wavelengths 

ranging from 230 nm to 234 nm, but we only show the results of 233.3 nm as, no 

wavelength dependence was found. At all the investigated wavelengths, HCNH+ 

formation remained the dominant channel, even at very low laser powers much less than 
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0.1 mJ.  In Figure 4.4, the DC sliced ion image and the associated translational energy 

distribution for the formation of m/z=28 are presented. As in the case of m/z=42 

discussed above, we neglect the initial recoil in any initial H loss step and simply assume 

m/z=16 for the cofragment mass. The ion image has two distinct components, with the 

faster component showing an appreciable anisotropy. The inner portion of m/z=28 image 

does not exhibit any anisotropy and peaks at very low energy of 2.3 kcal/mol, dropping 

off to a limit of 4.2 kcal/mol. The faster component in the m/z=28 image peaks at 4.6 

kcal/mol and extends out to 35 k cal/mol. From the potential energy profile presented in 

Figure 1, m/z=28 can be readily be identified as HCNH+ formation. The HCNH+ can be 

formed via several pathways, one of which is through the secondary decomposition of 

CH3CHNH2
+ to yield HNCN+ + H + CH4. If we consider the ground state dissociation of 

CH3CHNH2
+, the H2 loss channel to form CH2CNH2

+ + H+ H2 is expected to be much 

more significant than the HCNH+ + H + CH4 channel. Even at internal energies of 130 

and 140 kcal/mol, the RRKM branching of HCNH+ + CH4 /H2CCNH2 is calculated to be 

1:7 and 1.5:6, respectively. The fact that we see appreciable anisotropy in the faster 

component of the HCNH+ image is an indication that either excited state dynamics or 

multiphoton dissociation are involved.   

The angular anisotropy parameters describing the angular distributions are 

obtained by fitting the angular distributions from the ion image to an even order 

polynomial expansion: 

I (θ) α 1 + β2P2 (cos θ) + β4P4 (cos θ) + β6P6 (Cos θ) …………………………. (4.1) 

where θ is the angle between the laser polarization vector and the recoil velocity vector.  

Figure 4.5 (a) shows the angular distribution of the faster components of the HCNH+ ion 
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channel. This angular distribution is well fitted using only the second order Legendre 

polynomial, giving a beta value of 0.57. The measured anisotropies integrated over the 

entire image from the fast to slow components are presented in Figure 4.5(b). It is clear 

that HCNH+ ion image exhibits significant energy dependence in the angular distribution. 

There is a steady decrease in β with decreasing radius (velocity). A one-photon process 

can be fully described including only the P2 (cos θ) term in equation 1.   Since our 

experiment employs very low laser powers, and given this excellent fit including only the 

P2 term, we believe HCNH+ is the product of single photon dissociation and thus 

probably represents a direct dissociation process from an excited electronic state.  These 

results on HCNH+ formation will be discussed further in the Discussion section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: HCNH+ image and the associated translational energy distribution for 
CH3CH2NH2

+ cation dissociation at 233.3 nm 
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: (a) Angular distribution of HCNH+ ion. Solid lines correspond to the 
best fit with second order Legendre polynomial term (b) Anisotropy parameter, β, 
versus velocity for HCNH+ product channel following 233.3 nm dissociation of 
ETA cation. 
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4.4 Discussion 

 The ion imaging results, having identified the H-loss and HCNH+ ion formation 

as the main primary and secondary dissociation product channels,  respectively, can now 

be examined in light of the high-level ab initio calculations presented in Figure 4.1.  The 

stationary points and dissociation asymptotes for the ground state potential energy 

surface of ETA cation have been calculated at CCSD(T)/CBS and B3LYP/6-311G** 

level of theory. It is clearly seen that CH3CH2NH2
+ can undergo isomerization through 

rearrangements to more stable distonic CH2CH2NH3
+ and CH3CHNH3

+ isomers. The 

barrier heights associated with these rearrangements are 30.3 and 31.9 kcal/mol and the 

CH2CH2NH3
+ and CH3CHNH3

+isomers are 5.7 and 5.2 kcal/mol lower in energy than 

CH3CH2NH2
+, respectively. Earlier theoretical work on the potential energy surface of 

methylamine cation reports a similar isomerization of CH3NH2
+ to CH2NH3

+ cation, with 

an associated barrier height of 7.6 kcal/mol 123. The lowest primary dissociation channel 

of CH3CH2NH2
+ is H loss to form CH3CHNH2

+ at a reaction energy of 16.7 kcal/mol. 

ETA cation can also lose an H-atom from the NH2 group to yield a triplet species 

CH3CH2NH+ + H.  The triplet CH3CH2NH+ cation is located at 98.0 kcal/mol above the 

singlet CH3CHNH2
+ product.  The other primary channel is the formation of CH2NH2

+ + 

CH3, a process that involves a barrierless cleavage of the β-C-C bond with a reaction 

energy of 19.9 kcal/mol. CH4 can also be eliminated through a primary photodissociation 

process to yield CHNH2
+ cation via a barrier of 50.6 kcal/mol.  The reaction energy 

involved in this process is 34.3 kcal/mol, with the process requiring the breaking of a C-C 

bond and a significant rearrangement through the HCNH2
+ transition state structure. 

Another primary decomposition product of ETA cation is located at 65.2 kcal/mol above 
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the parent cation and involves the loss of NH2 to form the C2H5
+ cation. Although this 

channel occurs without an exit barrier, its contribution in the dissociation of ETA cation 

is not as competitive as the H-loss process that is located 48.5 kcal/mol lower in the 

potential surface. Within our available energy of 123.3 kcal/mol, CH3CH2NH2
+ can also 

lose H2 through a barrier height of 80.5 kcal/mol to form CH3CHNH+.  

We now consider the various secondary dissociation pathways presented in the 

potential energy profile presented in Figure 4.1.  Once the CH3CHNH2
+ cation is formed 

via H loss, it is expected to undergo secondary decomposition through H2 loss to form 

CH2CNH2
+ + H + H2. This process occurs with a barrier of 78.5 kcal/mol (above the H 

loss product) and involves significant rearrangements. CH3CHNH2
+ can also undergo 

barrierless H loss to yield CH2CHNH2
+, CH3CNH2

+ and CH3CHNH+ isomers that are 

located at 93.3, 111.8, and 121.8 kcal/mol above CH3CHNH2
+, respectively. Among the 

three H-loss channels from CH3CHNH2
+, the first is expected to be the most important. 

The formation of CH3CNH+ + H + H2 and HCNH+ + H + CH4 represent two other 

pathways in which CH3CHNH2
+ cation can undergo decomposition. The former channel 

involving H2 loss occurs with a barrier of 93.5 kcal/mol and is located at 36.3 kcal/mol 

above CH3CHNH2
+ while the latter process involving CH4 loss takes place with a barrier 

of 86.3 kcal/mol and is 8.2 kcal/mol higher than the H2 loss channel.  

H-loss channel.  From our combined experimental and theoretical results on 

CH3CH2NH2
+ cation dissociation at 233.3 nm, one photon dissociation leads to the 

formation of several primary and secondary product channels in which the primary loss 

of an H atom to form the singlet CH3CHNH2
+ ion is the lowest of all. The presence of 

two components in the ion image and the corresponding bimodal total translational 



www.manaraa.com

70 

 

energy distribution presented in Figure 4.2 is indicative of the formation of triplet and 

singlet H-loss species that are separated by 98 kcal/mol. Once the singlet CH3CHNH2
+ 

cation is formed, it is amenable to further secondary decomposition through H-loss, H2 

loss and CH4 loss to form m/z=43, 42, and 28, respectively. Further dissociation of the 

triplet species on CH3CH2NH+ is not energetically allowed. The fast component of the H-

loss product channel corresponds to the outer part of the ion image. The presence of a 

‘hole’ in this outer ring suggests the occurrence of secondary decomposition of 

CH3CHNH2
+ cation via several pathways. The features of the translational energy 

distribution presented in Figure 4.2 are consistent with barrierless ground state statistical 

dissociation of ETA cation following internal conversion. The first excited states of ETA 

cation are calculated to be about 2.67 eV above the ground state of the cation104. 

Immediately above the first excited state of  ETA cation, there exist numerous other low-

lying excited states that are separated by an average energy spacing of about 0.15 eV 124. 

At our excitation energy, there are thus many excited electronic states that can facilitate 

rapid nonradiative electronic relaxation. It is therefore plausible that the absorption of one 

233.3 nm photon by ETA cation will lead to subsequent dissociation in the ground state. 

The lack of anisotropy on the ion image suggests that the lifetime may be long relative to 

the rotational period of the molecule or that there is a geometry change during the 

dissociation. 

 Formation of m/z=42. Turning to the results on the formation of m/z =42 

presented in Figure 4.3, one can clearly see that the translational energy distribution 

peaks away from zero and falls off at high translational energy limit of 45 kcal/mol.  

Within our total available energy of 123.3 kcal/mol, it is possible to overcome the barrier 
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leading to the formation of CH2CNH2
+ + H + H2. Typically, the ion image associated 

with dissociation via a barrier should peak away from zero energy as this repulsive 

energy release is converted to translational energy. The presence of slow m/z=42 

products that may result from other multiphoton dissociation processes that are not 

discussed in this report may contribute to the observation of slow components in the 

m/z=42 image. 

HCNH
+
 formation.  The m/z = 28 image shown in Figure 4.4 and the 

corresponding translational distribution are quite interesting. Generally, this kind of 

bimodal distribution is a clear indication of a photodissociation process resulting from a 

superposition of two phenomena accompanied by two different translational energy 

releases, such as in the case of 1,1-difluoroethene dissociation 125. The slow part of the 

distribution, represented by the inner ring of the image, has a narrow kinetic energy 

release peaking near zero and falling off at a very low translational energy release of 16-

18 kcal/mol. As mentioned earlier in this manuscript, one of the central questions raised 

by our experimental results is the absence of the CH3 loss channel to yield CH2NH2
+. One 

possible explanation would be a rapid decomposition of the initially formed CH2NH2
+ 

product ions via H2 loss to yield HCNH+ product. In an earlier unimolecular 

decomposition study of CH2NH2
+, H2 loss was found to be accompanied by a small 

fraction of kinetic energy since the HCNH+ formed has bending excitation carrying away 

the available energy 126. The average rate constant for the formation of HCNH+ ions from 

CH2NH2
+ was calculated to be 6.0 × 104 s-1 126 .  If, in our experiment, CH2NH2

+ loses H2 

to form HCNH+, we expect the inner part of the image to be representative of this 

process. Indeed, a dissociation pathway involving H2 loss from CH2NH2
+  is expected to 
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occur via a barrier of 92.3 kcal/mol as demonstrated in our earlier results on methylamine 

cation 98. In principle, secondary decomposition of CH2NH2
+ does not seem a convincing 

explanation for the dominance of the slow part of HCNH+ product channel since the 

process would be too expensive energetically. A major observation to note, however, is 

the complete disappearance of the angular anisotropy of this inner ring which strongly 

suggests that the decay pathways of the slow and faster HCNH+ product channel ion are 

not the same. We turn now to the faster, anisotropic component of the HCNH+ image in 

Figure 4.5. Such anisotropy is unusual, if not unprecedented; in dissociation of 

polyatomic radical cations, as internal conversion and dissociation from long-lived lower-

lying states is the general rule. Instead, these results suggest direct dissociation via an 

excited state as aruged earlier. As shown by the results in Figure 4.1, the fast HCHN+ 

could result from secondary decomposition of CH3CHNH2
+. The image accompanying 

this process should have a ’hole’ as this channel has an exit (reverse) barrier of 41.8 

kcal/mol.  We do not anticipate that this process would be as competitive as the H,H2 loss 

channel. At this stage, the participation of excited state dynamics can be postulated as a 

likely explanation for the formation of the fast HCNH+ ions since multiphoton 

dissociation is ruled out by the low laser powers and the good fit to the second order 

Legendre polynomial. Unfortunately, Figure 1 can provide no insight into dissociation 

pathways on the excited state, and such calculations are extremely challenging.  We also 

note we are puzzled by the absence of the CH2NH2
+ channel in our experiment. Further 

theoretical studies, including a full account of the excited state processes involved, will 

be helpful to clarify this. 

 



www.manaraa.com

73 

 

4.5 Conclusions  

In summary, we report, via a combined experimental and theoretical 

investigation, results on the dissociation of ETA cation at 233 nm. As the main primary 

channel observed, the H- loss image has a translational energy distribution with a 

bimodal structure that correlates well with the formation of singlet CH3CHNH2
+ and 

triplet CH3CH2NH+ species on the ground state potential surface of the cation. In addition 

to H loss, CH3 loss to yield CH2NH2
+ is expected to be an important primary channel 

according to theoretical results, but we do not observe it in our experiment. HCNH+ is 

formed as a dominant secondary channel with a bimodal translational energy distribution. 

The appearance of a significant angular anisotropy on the outer region of the ion image is 

suggestive of a direct excited state decay pathway for this fast portion of the distribution, 

which is a significant portion of the overall yield. CH2NH2
+ decomposition to HCNH+

 

occurs at a very high energy so it does not seem a likely explanation for the dominance of 

this product. The formation of CH2CNH2
+   is also observed as a minor channel resulting 

from secondary decomposition of CH3CHNH2
+.  
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CHAPTER FIVE 

LOW TEMPERATURE BRANCHING RATIO MEASUREMENTS OF ION-

MOLECULE REACTIONS USING STATE PREPARED N2
+
 IONS 

5.1 Ion-molecule reaction of State-prepared N2
+
 ions with CH4, C2H2 and C2H4 

5.1.1 Introduction 

The gas phase study of state-specific ion-molecule reactions127  has provided an 

essential cornerstone for the fundamental understanding of unimolecular and bimolecular 

reaction dynamics128
. State-specific ion-molecule reaction experiments129-130  have, in 

addition, been very useful in developing accurate models of plasma environments and 

planetary atmospheres through the determination of absolute state-selected cross 

sections131,132 and product BRs.133,134 Application of  powerful methods that probe ion-

molecule reactions under single collision conditions135-136 and reaction kinetics at the 

relevant temperatures are key to developing a comprehensive picture of ion-molecule 

reaction dynamics.137-138 A great challenge facing these approaches, however, is 

obtaining accurate branching ratios at the low temperatures characteristic of the 

atmospheres of the outer planets and their satellites.  

Although important contributions to the study of ion-molecule reaction dynamics 

have been achieved by the use of state-prepared ions as the precursor reactant species in 

ion-molecule reactions130, accurate determinations of BRs of the various product 

channels have remained a challenging subject of considerable interest due to their critical 

role in the accurate modeling of chemically active and reducing planetary atmospheres 

such the dense nitrogen-rich atmosphere of Titan. 
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 As more concrete and detailed chemical information, such as from Cassini’s Ion 

and Neutral Mass spectrometer (INMS)139,140 has emerged, efforts to provide accurate 

models of Titan’s upper atmosphere have in parallel necessitated the need for accurate 

and up-to-date laboratory measurements of BRs of the crucial ion-molecule reactions that 

are important in the ionosphere.141,133,142. A  substantial number of laboratory studies have 

been devoted to the accurate determination of BRs of N2
+ reactions with the minor 

hydrocarbon constituents of the upper atmosphere, such as CH4, C2H2 and C2H4.
133 New 

experimental data are clearly required to provide accurate quantitative comparison 

between the in-situ observations of the Cassini orbiter and the proposed models. Indeed, 

for a thorough understanding of the astrochemical dynamics
143 in Titan’s chemically 

active atmosphere, new approaches to laboratory measurements of important 

astrophysical quantities such as the BRs at well-defined conditions need to be developed. 

To this end, we report on the low temperature BR measurements of ion-molecule 

reactions of state-prepared N2
+ ions with CH4, C2H2 and C2H4.  In these studies we have 

developed a simple but powerful approach that quickly provides the subject BRs at 

conditions close to those relevant for Titan’s ionosphere. 

 The three main pathways for the reactions of N2
+ with CH4

+ are: 

N2
+ + CH4 →  CH4

+ + N2          ∆Ho= -2.97 eV…………………..5.1.1 

   → CH3
+ + N2 + H    ∆Ho= -1.19 eV…………….…….5.1.2 

   → CH2
+ +N2 + H2     ∆Ho= -0.41 eV………………….5.1.3 

   → N2H
+ + CH3       ∆Ho= -2.86 eV .…………………5.1.4 

The N2H
+ ion product channel has only been observed in the studies of McEwan et al.142 

and Nicolas et al.131  The channels leading to the formation of CH3
+ and CH2

+ product 
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ions have been previously investigated using Ion Cyclotron Resonance (ICR), selected 

ion flow tube (SIFT) and free jet flow reactor techniques where both the rate coefficients 

and the BRs were measured.134,133 However, the BR measured by Randeniya and Smith 

144 at 8-15 K differ by 10% from the room temperature value.133 The critical role of N2 

photoionization in Titan's atmosphere and its subsequent contribution to the formation of 

complex organic molecules has also triggered a series of related photocell EUV 

experiments by Imanaka and Smith. 145,146 These studies have demonstrated that the 

photoionization of N2
+ at 60 nm can lead to the formation of CH3

+ product ions with a 

subsequent production of complex organic species. However, the conclusions of Smith 

and Imanaka studies are somewhat limited as to the description of initial chemical 

reaction mechanisms and the primary branching where ion-molecule reactions are 

expected to be the dominant processes that determine the subsequent chemistry. This is 

due to the fact that in a photocell, the generation of neutral complex organic molecules is 

a result of coupled sets of photodissociation, photoionization, ion-molecule reactions, 

electron-ion recombination and neutral-molecule reactions. 

Whereas the BR measurements for the N2
+ + CH4 reaction has been subject of 

considerable scrutiny both at room temperature and at low temperature conditions, the 

BR data of the various product channels in the reactions of N2
+ ions with C2H2 and C2H4 

remain insufficiently investigated.  Previous work by Anicich et al.134,133 has generally 

reported the thermal rate coefficient and BRs using the SIFT technique. For the N2
+ + 

C2H2 reaction, the most recent study133 reported a single non-dissociative charge transfer 

channel leading to the sole formation of C2H2
+ product ions. A product branching ratio134 

of 0.37:0.03:0.60 for the formation of C2H2
+, NCH+ and N2H

+ product ions reported in 
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Anicich's at al.’s earlier study134 was believed to be largely in error due to the presence of 

impurities and secondary collisions. As for the N2
+ + C2H4 reaction, a model by Anicich 

et al.133 predicted that the C2H3
+ and C2H2

+ product ions are formed with an overall BR of 

0.64:0.36, respectively, although there is as-yet no experimental support for this 

determination. This ratio was obtained without invoking HCN+ and HCNH+ ions in the 

model, although they were observed in Anicich's et al. experiments. 

 In the present study, we report for the first time the product branching ratios of 

state-prepared N2
+ ion-molecule reactions with CH4, C2H2 and C2H4 in a supersonic 

molecular beam expansion where the characteristic rotational temperature is 40 ± 5K and 

only a few collisions are present. This work is related to a number of previous studies. 

Pollard and coworkers147 used REMPI production of H2
+ to study H2

+ + H2 albeit in 

crossed beams at superthermal collision energies with an eye to the dynamics. 

Glenewinkel-Meyer and Gerlich148 examined the use of REMPI production of state-

selected H2
+ in single beam and merged beam reaction with H2 and examined many of 

the underlying experimental issues, but their focus was on using the approach to 

determine rate constants and cross sections. More recently, Belikov et al.149 extended the 

approach described by Glenewinkel-Meyer and Gerlich148 to study state-specific 

reactions of HBr+ at low temperature. They obtained rate constants for several different 

channels as a function of initial spin_orbit state and rotational level. Our approach is 

similar, although our focus is simply on determining the branching ratios, and we prepare 

our reactants in the collision region of the expansion 

The BR determinations provide direct insights into the underlying fundamental 

mechanisms accompanying the non-resonant dissociative charge-transfer reactions which 
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can further assist in the accurate modeling as well as a better understanding of the 

astrochemical dynamics in Titan’s ionosphere. Finally, these branching ratio 

measurements have been undertaken as a test-case for our newly-commissioned 

experimental approach that combines state-selective ion preparation with reaction in the 

course of the nozzle expansion. 

5.1.2 Experimental 

 The experiments were carried out using a modified velocity map imaging mass 

spectrometry apparatus (VMIMS) that was described in detail in Chapter 2. Here, only 

the details pertinent to the N2
+ initiated ion-molecule reactions will be highlighted are 

pulsed on. The reactant N2
+ ions were produced via a 2+1 REMPI scheme150. In this 

scheme, two photons of the 202 nm laser light are used to excite the ground N2 molecule 

to the intermediate a'' ∑g
+ Rydberg state. The wavelength calibration of the laser light 

was achieved by using a wavemeter (Coherent Wavemaster). The precise frequency of 

the tripled light used corresponded to the transition to the lowest rotational level (J=0) of 

the a'' ∑g
+ 
←X1

∑g
+ (0, 0) band of N2, measured to be 49420.29 cm-1. Absorption of an 

additional photon from the same laser pulse allows the production of N2
+ ions. The  a'' 

∑g
+ Rydberg state possesses a ground state N2

+ core151-152 and has been shown to ionize 

exclusively via ∆v=0 153. Consequently, this REMPI produces N2
+ ions that are entirely in 

the ground vibrational state of the cation. We observed no dependence of the branching 

on the rotational level excited, so these spectra were all obtained on the lowest, most 

populated level, giving N2
+ in low rotational levels. The tunable 202 nm light used to 

prepare the N2
+ ions was generated by frequency tripling of the output of a tunable, 

narrow-line width (<0.075 cm-1) OPO laser system (Spectra-Physics MOPO HF). The 
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MOPO HF was pumped by the third harmonic of a seeded Nd:YAG laser operating at 10 

HZ. Approximately 50 mJ/pulse of horizontally polarized 607 nm light with 10 ns pulse 

width and < 0.075 cm-1 bandwidth was produced. The MOPO output was then doubled in 

an angle tuned KDP crystal and then finally frequency tripled in BBO crystal to produce 

vertically polarized 202 nm light. The tripled light was then focused with a 16 cm lens 

into the ionization chamber where the reactions of N2
+ ions with the target neutral 

molecule took place.  

5.1.3 Results 

N2
+
 + CH4 reaction 

 The time-of-flight mass spectrum for the reaction between N2
+ (v=0) ions with 

CH4 is presented in Figure 5.1. The spectrum was accumulated up to 1200 shots at 10 Hz 

with the accumulated intensity of the CH3
+ and CH4

+ product ions being measured and 

monitored for over a period of 15-20 minutes to ensure that there was no change in the 

BRs. In order to eliminate the occurrence of secondary reactions, CH4 concentrations 

were kept low at ~1%. The obtained mass spectra were then fitted using Gaussian 

functions and the integrated area of the peaks used to calculate the BRs presented in 

Table 5.1. The results summarized in Table 5.1 give an overall branching ratio of 0.83: 

0.17 for the formation of CH3
+ and CH2

+ product ions, respectively. Although it is 

energetically possible to form the CH4
+ ion, this non-dissociative charge transfer was not 

observed in our experiment. Even at very low collision energies, the integral cross section 

for this channel is below 0.1Å2 as has already been reported by Nicolas et al.131  
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In order to gain more insight onto the dynamics of the dissociative charge-transfer 

reaction of state-prepared N2
+ ion with CH4, it important to consider the dissociation 

pathways and the fragmentation pattern of CH4
+ ion as reported by Stockbauer154 and 

Bombach.155 The ionization energy of CH4 is 12.61 eV while the dissociation energy of 

CH4
+ leading to the formation of CH3

+ + H channel is 1.64 eV.156 The removal of an 

electron from CH4 molecule leads to the formation of  nascent CH4
+ product ions in a 

triply degenerate 2T2 state.157 Due to the Jahn-Teller effect,157 the nascent CH4
+ cation 

then undergoes deformation to lower 2Tg symmetry structure. Between 13.8-16.4 eV, the 

CH4
+ (2Tg) ion exhibits a breakdown pattern158 that leads to the formation of CH4

+ 

product ions only below 14.3 eV. Above 14.3 eV, the branching ratio to the CH4
+ product 

Figure 5.1: Time of flight spectrum of the ionic products from the reaction of N2
+ 

(v=0) with methane. 
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ion decreases due to the appearance of CH3
+ ion. The CH4

+ product ion disappears above 

14.5 eV.  The threshold for the formation of CH2
+ product ions is 15.2 eV, with its 

branching increasing with an increase in the internal energy. Taking into account that the 

ionization energy (IE) of N2 is 15.58 eV159, this means that a significant amount of the 

2.97 eV reaction exoergicity is deposited into CH4
+ ion in form of internal energy. On the 

basis of this reported fragmentation pattern of CH4
+ ion below 16 eV, the absence of a 

CH4
+ ion peak in our mass spectrum is a confirmation that CH4

+ formation becomes 

insignificant as CH3
+and CH2

+ ions are formed due to an increase in the internal energy 

of the parent CH4
+ product ion . The IE for Ar159 is very close to that of N2, it is therefore 

worth comparing our present results to those of Ar+ + CH4 reaction reported by Tsuji et 

al.160 In the Ar+ + CH4 reaction, Tsuji et al.160 observed the formation of CH3
+ and CH2

+ 

product ions as the only primary channels, with an overall branching ratio of 0.85:0.15, 

respectively. This branching is very close to our present BR value for the formation of 

CH3
+ and CH2

+ product ions in the N2
+ + CH4 reaction which is in turn, indicative of a 

similar charge transfer reaction mechanism. In addition, our BR is also in reasonable  

agreement to the earlier reported values at low temperature144 and room temperature 

conditions133. 

N2
+
 + C2H2 reaction 

 The time-of-flight spectrum presented in Figure 5.2 shows the formation of C2H2
+ 

ion as the only primary product channel in the N2
+ + C2H2 reaction. This is in agreement 

with the previous room temperature measurements by Anicich et al.133 using flowing 

afterglow-selected ion flow tube (FA-SIFT) technique. The single charge transfer channel 

was observed to proceed with an overall rate constant of 5.50 X 10-10 cm-3/s. The IE of 
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C2H2 is 11.4 eV159. This gives a value of 4.19 eV as the total amount of internal energy 

that can efficiently be transferred to the C2H2
+ in a N2

+ + C2H2 collision and hence 

become available for bond-breaking in the parent C2H2
+ cation.  

 

 

 

 

 

 

 

 

 

The appearance energy for the lowest energy dissociation channel in C2H2
+ (i.e., 

the formation of C2H
+ ion) is 17.3 eV159,161. This value is higher that the ionization 

energy of N2
+, hence it is not energetically possible to induce C-H bond dissociation in 

C2H2
+ through a dissociative charge-transfer reaction with N2

+. Our present results are 

also in reasonable agreement with the almost isoenergetic Ar+ + C2H2 reaction160 where 

C2H2
+ product ion was observed as the only product channel. The formation of C2H2

+ 

Figure  5.2: Time of flight spectrum of C2H2
+ product ion from the reaction of N2

+ 
(v=0) with acetylene. 
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(2
∏u) in the N2

+ + C2H2 reaction can simply be understood as an efficient charge-transfer 

reaction that occurs without an energy barrier in a direct long-range encounter. 

N2
+
 + C2H4 reaction 

 Figure 5.3 presents the associated time-of-flight spectrum for the N2
+ + C2H4 

reaction. The main peaks observed in this experiment correspond to the formation of 

C2H3
+ and C2H2

+ product ions at a branching ratio of 0.74:0.26 (as shown in Table 5.1).  

  

 

 

 

 

 

Figure 5.3: Time-of-flight spectrum of the product ion channels from the reaction of N2
+

(v = 0) with C2H4. Inset shows the spectrum for reaction with C2D4, confirming the 
absence of C2D4

+ product. 
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Table 5.1: Branching ratios for the formation of various product ion channels observed 
upon the reaction of N2

+ (v=0) with CH4, C2H2 and C2H4. The branching ratios are an 
average of at least six independent measurements under similar conditions with ±2σ 
error. 
 

Reaction Product  ion Branching ratio 

N2
+ + CH4 CH3

+ 0.83 ± 0.02 

CH2
+ 0.17 ± 0.02 

N2
+ + C2H2   C2H2

+ 1 

N2
+ + C2H4 

 

C2H3
+ 0.74 ± 0.02 

C2H2
+  0.26 ± 0.02 

 

At this point, it may be worthwhile to take into consideration the electronic states 

of C2H4
+ ion that may be involved in the charge- transfer reaction below 15.58 eV, the 

limit for our recombination energy. The four main C2H4
+ precursor states that may be 

involved are X2B2u, A
2B2g, B

2A2g, and C2B3u.
162,163 The removal of an electron from any 

of these states results in C-H bond (s) rupture. As mentioned by Tsuji et al 160 in the Ar+ + 

C2H4 ion-molecule reaction, the CT reaction in C2H4 predominantly leads to an efficient 

population of a pre-dissociative C2H4
+ state that lies at about the 15.3 eV energy range.  

From the C2H4 breakdown diagram 155, C2H4
+ ion can only be formed below 13.3 

eV. The production of the parent ion starts to decrease above 13.0 eV due to the 

appearance of  C2H3
+ and C2H2

+ product ions. In the Ar++ C2H4 reaction for example, the 
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formation of C2H4
+ non-dissociative CT channel was negligible with a reported BR of 

0.04 as compared to the C2H3
+: C2H2

+ BR of 0.76:0.20. This reported BR for the 

formation of to C2H3
+ and C2H2

+ product ions was found to increase with an increase in 

the internal energy of the parent C2H4
+ ion. The present 0.73:0.27  BR for the formation 

of C2H3
+ and C2H2

+ product ions, respectively is not very different from the one observed 

for the Ar+ + C2H2  reaction in Tsuji et al.’s work 160. We do not anticipate that C2H4
+ 

product channel would be formed, as it is expected to undergo a rapid decomposition to 

C2H3
+ and C2H2

+ product ions. To gain deeper insights onto the dynamics of this N2
+ ion-

molecule reaction, these results will be discussed further in the following section by 

invoking the photoionization and the state-specific photodissociation dynamics results of 

C2H4
+ cation as reported in earlier studies. 

 

5.1.4 Discussion: 

N2
+
 + CH4 reaction: dissociative charge transfer and the branching ratios 

 Despite the uncertainty in the BR measurements by different techniques and 

workers, it is generally accepted that the mechanism accompanying this reaction is a 

simple capture process followed by dissociative charge-transfer.  It is instructive to 

discuss our results in relation to the earlier results of Ar+ + CH4 reaction by Tsuji et al. 160 

In the Ar+ + CH4 reaction, the dissociative charge transfer leading to the formation of 

CH3
+ and CH2

+ product ions is thought to involve a non-adiabatic transition between two 

non-resonant charge states ; Ar+ + CH4 and CH4
+ + Ar.  As indicated by the magnitude of 

the total cross-section, there is a large non-adiabatic coupling between these two charge 

transfer states. On reaching the first relevant crossing that has a high probability, Ar+ and 
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CH4 charge transfer occurs with unit probability resulting in an immediate dissociation of 

the nascent CH4
+ ion. Although a detailed potential energy surface for the reaction N2

+ + 

CH4 is not currently available, it is likely that the dissociative charge transfer reaction 

proceeds via a non-adiabatic coupling just as in the Ar+ + CH4 case. In an earlier study, 

Nicolas et al.10 proposed that the formation of CH2
+ and CH3

+ ions proceeds via a 

separated sequential process. In this case, an impulsive single-electron transfer is later 

accompanied by CH4
+ ion dissociation.  

 Using a flow jet reactor, Randeniya and Smith 144 obtained a CH3
+: CH2

+ 

branching ratio of 0.80: 0.20 at 30 K, a value that is very close to our present  40 ± 5K 

value of 0.83:0.17. The room temperature branching ratio of 0.88: 0.12 reported by 

Anicich et al.133 differs by about 7% with our value. It is critical to mention that the 

CH3
+: CH2

+ branching ratio does not depend significantly on the collision energy, an 

indication that the kinetic energy is not efficiently converted into internal energy of the 

CH4
+ ion. As previously noted in the Nicholas et al. study, this behavior is also a 

confirmation of the strong coupling between the two aforementioned charge-states (N2
+ + 

CH4 and CH4
+ + N2).  

Charge transfer in N2
+
 + C2H2 reaction 

 High resolution He I photoelectron spectroscopy shows that the adiabatic 

ionization energies corresponding to X2
∏u, A2

∑g
+ and B2

∑u
+ states of C2H2

+ ion are 

11.403, 16.297 and 18.391 eV163, respectively. There also exist regions of autoionizing 

Rydberg series that converge to vibrationally excited levels of the electronic ground state 

at regions 2 eV above the ground state. It is plausible that these autoionizing Rydberg 

states act as the precursors to the non-dissociative charge transfer reaction that lead to the 
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sole formation of C2H2
+ product ion.  Since the threshold for the appearance of the lowest 

H-loss dissociation channel, C2H
+ + H, is above the recombination energy of N2

+ ion 

(15.58 eV), the only accessible electronic state in a C2H2 collision encounter with N2
+ is 

the X2
∏u  ground state. As no chemical bond is broken in C2H2

+ ion, the appearance of a 

single peak as displayed in Figure 2 is as a result of a CT process that occurs over 

comparatively long distances in an electron transfer that is accompanied by no 

appreciable momentum change. Considering the N2
+ ion recombination energy of 15.58 

eV and the strong C-H bond in C2H2
+ cation, the non-dissociative CT channel leading to 

the formation of C2H2
+ product ion is expected to be the only primary process. This is 

consistent with our observed unity measurement of the branching for this reaction. 

N2
+
 + C2H4 reaction: dissociative charge transfer and the branching ratio 

 Our time-of-flight mass spectrum shown in Figure 3 represent the first 

unambiguous experimental study identifying C2H3
+ and C2H2

+ as the major primary 

product channels in the  N2
+ + C2H4 charge transfer reaction. The branching ratio for the 

formation of C2H3
+: C2H2

+ product ions as summarized in Table 5.1 is 0.74:0.26, 

respectively. In their most recent work, Anicich et al.133 performed careful modeling of 

the N2
+ + C2H4 reaction and followed the reactions over a significant flow range. 

Whereas the HCN+ and HCNH+ channels reported earlier by Anicich et al. were omitted 

in the model, the non-dissociative charge-transfer channel was also not identified. A 

branching ratio of 0.64:0.36 for the C2H3
+: C2H2

+ product channels was obtained from the 

model.  

 Our BR measurement differs by ~9% from that inferred from the model. In order 

to get more insight into N2
+ + C2H4 dissociative charge transfer reaction that leads to the 
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observed branching ratio, it is beneficial to consider the excited states of C2H4
+ cation 

that may be involved. As mentioned earlier, below 16 eV the four C2H4
+ accessible sates 

are: X2B3u, A2B3g, B2Ag and C2B2u states at 10.51, 12.45, 14.45, and 15.87 eV, 

respectively164. On the other hand, the appearance energies for the formation of C2H3
+ 

and C2H2
+ ions are 13.3 and 13.0 eV, respectively164. This clearly shows that at a total 

N2
+ recombination energy of 15.58 eV, the C2H3

+ and C2H2
+ ions have thresholds that are 

associated with the X2B3u, and A2B3g as the possible precursor electronic states. 

  We note here that in order to have a clear picture of the dynamics involved in the 

CT reaction of N2
+ + C2H4

+, one cannot overlook the underlying photodissociation 

dynamics of the C2H4
+ cation and the associated branching as exemplified in a number of 

previous studies. Indeed, a detailed state-selected ion imaging study on C2H4
+ cation 

dissociation by Kim et al. 165 has established that the C2H4
+ cation undergoes 

fragmentation that leads to H-loss and H2 elimination as the main primary processes. 

Consistent with the previous single-photon ionization mass spectrometry and threshold-

photoelectron-photoion coincidence (TPEPICO) studies154, Kim et al.165 found the H 

elimination channel to be much more favorable than the H2 loss channel. It is interesting 

to note that just as in these photochemistry experiments, the most preferred dissociative 

CT channel in our present study is the H-loss channel leading to the formation of C2H3
+ 

product ion. Although Ar+ is more energetic than N2
+ ion (15.76 recombination energy 

versus 15.58 eV), its reactions with C2H4
+ provides an additional platform for obtaining a 

qualitative picture of the charge-transfer mechanism for the reactions of N2
+ with C2H4. 

The Ar++ C2H4 study160  reported a branching of 0.76:0.20:0.04 for C2H3
+:C2H3

+:C2H4
+ 

with a conclusion that the C2H3
+ and C2H3

+ ions are produced though a near-resonant 
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charge transfer mechanism without significant momentum transfer. Consequently, two 

charge transfer mechanisms in the Ar+ + C2H4 reaction are inferred; one is the dominant 

near-resonant dissociative charge transfer leading to the formation of C2H3
+ and C2H2

+ 

ions while the other is the minor non-resonant non-dissociative charge transfer leading to 

the formation of C2H4
+ parent ions. In the N2

+ + C2H4 reaction, we propose that just as in 

the case of N2
++ CH4 reaction, the collision encounter between N2

+ ions and the C2H4 

molecule lead to an efficient dissociative charge transfer involving a non-adiabatic 

transition between two non-resonant charge states of N2
+ + C2H4 and C2H4

+ + N2. 

Detailed theoretical studies on the potential energy surface for the reaction N2
+ + C2H4 

would be required to validate our proposed mechanism but owing to the similarities 

between the recombination energies of Ar+ and N2
+ ions, this interpretation appears quite 

plausible. Our qualitative arguments can further be supported by the fact that we do not 

observe the parent C2H4
+ ion.  

 

5.2 Reaction of state-prepared N2
+ 

ion with Acetonitrile 

5.2.1 Introduction 

 As one of the possible building blocks of biomolecules166, Acetonitrile (CH3CN) 

was first discovered in Titan’s atmosphere via ground-based mid microwave sub-mm 

spectroscopy. A disk-averaged vertical profile mole fraction of the order of 10-8 was 

revealed above 150 km167. This profile was found to increase slowly with altitude up to 

500 km. CH3CN has also been found to be ubiquitous in laboratory experiments 

simulating Titan’s atmosphere168. The mole fraction of CH3CN calculated by two recent 

models appears to be in close agreement139, 168. These two models propose the insertion of 
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N (2D) into C2H4 as the major route leading to the production of CH3CN. Although the 

possible role of CH3CN and other related cyano compounds in Titan’s ion-molecule 

reactions has not received much attention in the past, we seek to report on the low 

temperature product BRs of N2
+ reaction with CH3CN as an initial attempt understanding 

the fate of other closely related unsaturated trace constituents in Titan’s atmosphere upon 

a collision encounter with the dominant N2
+ cation. Utilizing the SIFT technique, Wincel 

et at;169 reported room temperature rate coefficient and product BRs for the reaction of 

N2
+ cation with CH3CN. For a period of more than 20 years, no further experiments on 

N2
+ reaction has been undertaken and the existing BRs are largely in error due to the use 

of inaccurate dissociation thresholds for CH3CN+ cation and the possible involvement of 

electronically excited N2
+ cations. We expand on this in our discussion on the BRs. 

 Figure 5.4 shows some of the energetically allowed ionization and fragmentation 

pathways for CH3CN. The lowest energy values associated with the production of 

CH2CN+, CHCN+ and CCN+ are 14.4 eV, 15.9 eV and 20.0 eV170, respectively. Studies 

on acetonitrile molecular cation dissociation have also been carried out using several 

mass spectrometric techniques171-173. Using mass-analyzed ion kinetic energy 

spectrometry, Choe172 has for example obtained the kinetic energy distribution for the H-

loss channel that leads to the formation of CH2CN+ product ion and perfomed Density 

functional theory calculations to investigate the isomerization and dissociation pathways 

of the ground state CH3CN+ cation. In this experiment, only the H- loss product was 

observed, agreeing with the previous experimental results. 
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5.2.2 Charge transfer, H-loss channels and the branching ratios 

 Figure 5.5 shows the time of flight profile associated with the reaction of N2
+ 

cation with CH3CN at 202 nm. Here, we neglet the N2
+ peak and show only the H-loss 

and charge transfer product ion peaks at m/z 40 and 41, respectively. Taking the 

recombination energy of N2
+ cation to be 15.58 eV and considering the associated 

Figure 5.4: Energy diagram showing the possible dissociation channels of acetonitrile 
cation in a charge transfer reaction involving N2

+ cation with a total recombination energy 
of 15.58 eV 
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dossociation thresholds as presented in Figure 5.3, the only two possible primary product 

channels possible in a charge transfer reaction involving N2
+ with CH3CN are:( i) Charge 

transfer leading to the formation of the parent cation and (ii) the H-loss product. This is 

indeed consistent with our results as opposed to the Wincel et al169 results where the H2 

loss product was observed. In the Wincel’s experiment, the N2
+ ions were prepared by 

bombandment with an electron beam of gas mixtures of CH3CN + M (M= Ar, H2, N2, 

CO, CO2 and CH4 at pressures ranging from 0.01 to 0.4 torr and temperatures between 

305 K and 345 K). This method of preparing N2
+ cations resulted in the production of 

long-lived excited ions of N2
+ ion that reacted with CH3CN forming CH2CN+ product 

ions.  Table 5.2 gives a summary of Wincel’s et al;169 banching ratio and our present low 

temperature BR.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5: Time of flight spectrum of CH2CN+ and CH3CN+ product ions 
from the reaction of N2

+ (v=0) with acetonitrile. 
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Using our new low temperature technique, we obtain a branching ratio of 

0.95:0.05 for the formation of CH2CN+ and CH3CN+ product ions, repectively. The 

branching ratio seems to overwhelmingly favor the formation of the H-loss product 

channel just like is the case of Choe’s experiment172 where the H-loss product was 

observed to be the dominant channel. RRKM model calculations based on the obtained 

potential energy surface predict that CH3CN+ cation interconverts to CH2CNH+ and 

CH2NCH+ followed by dissociation to a cyclic C2H2N
+ via an cyclic C2H3N

+ intermediate 

near the threshold172. The H-loss kinetic energy distributionn in Choe’s experiment seems 

broader and different than the typical statistical distribution associated with a simple bond 

cleavage. One possibility for this large KER is a considerable reverse barrier which is 

commom in some direct bond cleavage reactions to produce cations with aromatic 

stability. 

  Table 5.2. BRs for the formation of various product ion channels observed upon the 
reaction of N2

+ (v=0) with CH3CN. The branching ratios are an average of at least six 
independent measurements under similar conditions with ±2σ error 
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Let us now incline our discussion of our reported BRs in light of Titan’s 

ionospheric chemistry and the associated N2
+-induced ion-molecule reactions. It has been 

pointed out that nitriles in Titan’s atmosphere are more abundantly formed at higher 

altitudes174. In these regions, N2 is more frequently ionized and/or dissociated by the 

magnetospheric electrons from Saturn’s rapidly rotating magnetosphere and EUV-

irradiation than at the lower altitudes. This makes the determination of accurate BRs of 

N2
+ ion-molecule reactions with the trace nitrile compounds such as CH3CN very 

important as far as supporting the models is concerned. The high proton affinities of 

nitriles such a CH3CN allows them to be effectively protonated by the ubiquitous 

protonated hydrocarbon ions (such as C2H5
+) in Titan’s primitive, reducing ionosphere. 

Therefore, the accurate low temperature BRs determined in the current study, if 

incorporated in Titan’s models, will assist in the accurate modeling of nitrile chemistry 

and give insights into the haze formation mechanisms.  

 

5.3 Conclusions and Implications for Titan's atmosphere 

 The BRs of the reactions of state-prepared N2
+ ion with CH4, C2H2 and C2H4, the 

main minor hydrocarbon constituents of Titan's upper atmosphere, have been measured at 

a characteristic temperature of 45 ± 5K. The dominant reaction channels in the N2
+ + CH4 

and N2
+ + C2H2 reactions are the non-resonant dissociative CT while for the N2

+ + C2H2 

reaction, non-dissociative CT channel leading to the sole formation of C2H2
+ product ion 

is the only reaction channel. In the N2
+ + CH4 reaction, a branching ratio of 0.83:0.17 is 

obtained for the formation of CH3
+ and CH2

+ product ions, respectively. The absence of a 

non-dissociative CH4
+ charge transfer channel suggest that the dominant process in this 
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reaction is a near-resonant CT process that is accompanied by simple C-H bond rupture 

of the nascent CH4
+ ion. Results for the N2

+ + C2H4 reaction indicate that C2H3
+ and 

C2H3
+ product ions are formed at a branching ratio of 0.74:0.26, respectively. The 

process associated with this observed branching is a simple capture process followed by a 

non-resonant dissociative CT. For the reaction involving N2
+ with CH3CN, a branching 

ration of 0.95:0.05 is obtained for the formation of CH2CN+ and CH3CN+ product ions, 

respectively. This BR overwhelmingly favors the formation of H- loss dissociative charge 

transfer channel in accordance with the statistical ground state dissociation of the cation. 

This present study represents the most reliable experimental data on the primary 

branching ratios of the main product channels in low temperature reaction of N2
+ with 

CH4, C2H2, and C2H4. This primary branching also gives a direct insight onto the 

dynamics associated with these ion-molecule reactions in Titan’s rich ionospheric 

chemistry. The reported branching ratio measurements illustrates a new, promising 

modification of a VMIMS apparatus that allows for direct determination of branching 

ratios of state specific ion-molecule reactions at low temperatures prevalent in Titan’s 

upper atmosphere. 
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ABSTRACT 

ASTROCHEMICAL DYNAMICS: 
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This work presents results of primary fundamental photodissociation and state-

specific ion-molecule dynamical studies that are relevant to understanding the formation 

and growth mechanisms of unsaturated hydrocarbon molecules, haze layers and aerosols 

in Titan’s upper atmosphere. In the diacetylene dimer, it is shown, via laboratory studies 

combined with electronic structure calculations that the photodissociation of the dimer 

readily initiates atomic hydrogen (H) loss and atomic H transfer reactions forming two 

prototypes of resonantly stabilized free radicals, C8H3 and C4H3, respectively. In 

ethylamine cation, high-level ab initio calculations identify the complex dissociation 

pathways for the ground state CH3CH2NH2
+ radical cation at 233.3 nm using Direct 

current (DC) slice imaging technique, revealing important features of the potential 

surface that are important in Titan’s ion-molecule reactions. Finally, a new technique is 

implemented to measure the branching ratios for the reactions of state-prepared N2
+ ions 

with methane (CH4), acetylene (C2H2) ethylene (C2H4), Hydrogen (H2) and acetonitrile 

(CH3CN) under a rotational temperature ~40 ± 5K. 
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